Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
基本信息
- 批准号:RGPIN-2014-04806
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Radioactivity is easy to detect since the nuclear decay emits high energy particles. In fact, it was first discovered by the accidental exposure of photographic film by such particles. Modern electronic detectors are extremely sensitive and can detect radioactivity from even a few radioactive atoms, enabling *radiotracer* techniques, where a chemical species, tagged with a radioactive atom, is followed through chemical, physical and biological processes. This is the basis for medical imaging techniques, such as Positron Emission Tomography (PET). Here, radioactive decay merely reports the location of the radiolabelled species. Certain kinds of radioactivity, however, can give a much more detailed picture of the local environment of the radioactive probe atom, a property that is the basis of beta-detected nuclear magnetic resonance (ß-NMR), the technique on which this proposal is based.
Detection by radioactive beta decay makes ß-NMR an exceptionally sensitive means to study the local atomic properties of materials. However, it is complicated to carry out such measurements. The radioactive ions used necessarily have very short halflives on the order of seconds or less, so they must be made immediately before being used. The ISAC facility at TRIUMF, Canada's national lab for nuclear and particle physics, located at UBC in Vancouver, provides beams of such short-lived radioactive ions. Our main probe is a heavy isotope of Li, 8Li (halflife 848 milliseconds). Only a few other labs in the world can make such beams but more are being constructed. Our efforts at TRIUMF lead the world in the development of ß-NMR, and based on our success, other labs are now looking to follow.
The difficulty and complexity of such measurements means that we restrict the use of ß-NMR to problems that it is uniquely capable of addressing. A key capability of ß-NMR is the ability to implant the radioactive probe at different depths in a material. While there are many powerful probes of the *surface*, the top atomic layer, of a material, there are very few that can study materials as a function of depth below a surface. Our main motivation then is to use ß-NMR to study surface and interface effects that give rise to poorly understood depth-dependent phenomena in solids on depth scales of a few nanometers (1 billionth of a meter) to a few hundred nm, an important range for modern electronic technology.
Interfaces between dissimilar materials like metal/semiconductor, metal/polymer or electrode/electrolyte are crucial to all sorts of devices. As devices are further miniaturized towards the limit of *nanotechnology*, every atom in the device is near an interface. However, interface effects are not well understood. This proposal aims to study interface problems using the depth-resolved power of ß-NMR.
Specifically, we will study new materials that may be the basis for next generation technologies, e.g. topological insulators and correlated electronic conductors that have unique electromagnetic properties for new types of devices that may sidestep fundamental limitations of conventional semiconductor devices. We will study nanostructured catalytic metals and interface effects in Li ion conductors, with the aim of a better fundamental understanding and enable new generations of battery technology, crucial for the increasing energy demands of portable devices. We will also explore new applications of ß-NMR to polymers and certain problems in biochemistry that cannot be addressed in other ways.
Canada will benefit by leading the world in advanced materials research with outcomes that lead to a better fundamental understanding that will afford optimization of current technologies as well as development of radically new ones.
由于核衰变释放出高能粒子,所以放射性很容易被探测到。事实上,它最初是在照相胶片被这种粒子偶然曝光时发现的。现代电子探测器非常灵敏,甚至可以从几个放射性原子中检测出放射性,从而使“放射性示踪”技术成为可能,在这种技术中,用放射性原子标记的化学物质可以通过化学、物理和生物过程进行跟踪。这是医学成像技术的基础,如正电子发射断层扫描(PET)。在这里,放射性衰变仅仅报告了放射性标记物种的位置。然而,某些类型的放射性可以给出放射性探针原子的局部环境的更详细的图像,这是β探测核磁共振(ß-NMR)的基础,这是该提议所基于的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MacFarlane, William其他文献
MacFarlane, William的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MacFarlane, William', 18)}}的其他基金
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
- 批准号:
RGPIN-2019-04257 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
- 批准号:
RGPIN-2019-04257 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
- 批准号:
RGPIN-2019-04257 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
- 批准号:
RGPIN-2014-04806 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
- 批准号:
RGPIN-2014-04806 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
- 批准号:
RGPIN-2014-04806 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
- 批准号:
RGPIN-2014-04806 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
- 批准号:
RGPIN-2020-06695 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
- 批准号:
RGPIN-2020-06695 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
- 批准号:
DGECR-2020-00451 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Launch Supplement
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
- 批准号:
RGPIN-2020-06695 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development of film-type depth-dose measurement system for carbon-ion beams and its application to multi-institutional clinical dose intercomparison
碳离子束薄膜式深度剂量测量系统研制及其在多机构临床剂量比对中的应用
- 批准号:
20K08013 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
- 批准号:
RGPIN-2014-04806 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
- 批准号:
RGPIN-2014-04806 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Scene flow estimation for 3D video coding and its application to motion and depth compensation
3D 视频编码的场景流估计及其在运动和深度补偿中的应用
- 批准号:
17K12717 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
- 批准号:
RGPIN-2014-04806 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Integral analysis of ocean bottom pressure change due to crustal deformation and oceanic depth profile change: New application of dense sealfoor networks
地壳变形和海洋深度剖面变化引起的海底压力变化的整体分析:致密海床网络的新应用
- 批准号:
15H04228 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




