Statistical Methodologies for Competing Risks

竞争风险的统计方法

基本信息

  • 批准号:
    RGPIN-2014-06157
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Competing risks often arise in the analysis of survival data in biomedical research. The primary objective of this research program is to develop appropriate statistical methodology for clustered data with multiple events in the presence of competing risks. I propose to develop a progressive competing risks model as an extension of a classical competing risks model where at each stage individuals can experience different events. This model will be further developed to appropriately take into account the complex correlation structures. Specifically, I have four aims for this research: (1) to develop a general methodology for modeling successive events in the presence of competing risks; (2) to handle complex dependence structures; (3) to incorporate time-dependent or interval-censored covariates; (4) to evaluate the predictive performance of the model. Aim (1): Establish a progressive model for successive events occurring in multiple-stage disease processes for correlated survival data in the presence of competing risks. We will develop a progressive competing risk model using two commonly used approaches based on the cause-specific hazard and subdistribution hazard regressions. We will then evaluate the impact of competing events on the absolute risks of developing the event of interest at each event stage. Aim (2): Develop statistical approaches for handling complex dependence structures occurring due to the correlation among multiple events within individuals and the correlation among family members. Nested frailty models can be adopted to accommodate the hierarchical dependencies based on individual-specific and family-specific random variables. In addition, Copula models will be adopted for joining marginal distributions of multiple outcomes while nested frailty models will take into account complex familial correlations. Aim (3): Develop statistical methods for time-dependent or interval-censored covariates for the proposed models. Interval-censored data arise in longitudinal studies where the time to an event is not directly observed but is known only to have occurred within an interval of time. We will develop estimation procedures to handle interval-censored data, especially to incorporate time-dependent or interval-censored covariates into the proposed model to examine their effects at different stages of multiple disease processes. Aim (4): Develop predictive measures for the risk of developing a future event in the presence of competing risks along the disease process. We will derive several predictive measures such as cumulative incidence functions and transition probabilities based on the model proposed in Aim 1. In addition, we will derive a dynamic cumulative function that estimates the conditional probability of developing an event of interest within a fixed window of time (e.g., 5-year prediction). For statistical inference, we will further develop the robust variance estimates and confidence intervals for comparing cumulative incidence curves or dynamic prediction curves at different covariate sets. Based on the proposed predictive measures, we will evaluate and compare the predictive performance of the model. We believe that the proposed development and evaluation of statistical methodologies for multiple event processes obtained from correlated survival data in the presence of competing risks will have important applications to genetic and biomedical research problems, in particular, to elucidate the genetic basis of many complex diseases.
在生物医学研究的生存数据分析中经常出现竞争风险。本研究计划的主要目标是为存在竞争风险的多个事件的聚类数据开发适当的统计方法。我建议发展一个渐进的竞争风险模型,作为经典竞争风险模型的扩展,在每个阶段个体可以经历不同的事件。该模型将进一步发展,以适当地考虑复杂的相关结构。具体来说,我对这项研究有四个目标:(1)开发一种通用的方法来模拟存在竞争风险的连续事件;(2)处理复杂的依赖结构;(3)纳入时变或区间截除协变量;(4)评价模型的预测性能。目的(1):在存在竞争风险的情况下,为多阶段疾病过程中发生的连续事件建立一个相关生存数据的渐进模型。我们将开发一个渐进的竞争风险模型,使用两种常用的方法,基于原因特异性风险和亚分布风险回归。然后,我们将评估竞争项目对在每个项目阶段开发感兴趣的项目的绝对风险的影响。目的(2):发展统计方法来处理由于个体内部多个事件之间的相关性和家庭成员之间的相关性而产生的复杂依赖结构。可以采用嵌套脆弱性模型来适应基于个人特定和家庭特定随机变量的分层依赖关系。此外,Copula模型将用于连接多个结果的边际分布,嵌套脆弱性模型将考虑复杂的家族相关性。目标(3):为所提出的模型开发时间相关或区间截尾协变量的统计方法。间隔截尾数据出现在纵向研究中,其中事件发生的时间不是直接观察到的,而是只知道发生在一段时间间隔内。我们将开发估计程序来处理间隔剔除的数据,特别是将时间相关或间隔剔除的协变量纳入所提出的模型中,以检查它们在多种疾病过程的不同阶段的影响。目标(4):在疾病过程中存在竞争风险的情况下,制定未来事件发展风险的预测措施。我们将基于Aim 1中提出的模型推导出一些预测度量,如累积关联函数和转移概率。此外,我们将推导一个动态累积函数,用于估计在固定时间窗口(例如,5年预测)内发展感兴趣事件的条件概率。对于统计推断,我们将进一步发展稳健方差估计和置信区间,以比较不同协变量集的累积发生率曲线或动态预测曲线。基于提出的预测度量,我们将评估和比较模型的预测性能。我们认为,从存在竞争风险的相关生存数据中获得的多事件过程的统计方法的拟议发展和评估将对遗传和生物医学研究问题具有重要应用,特别是阐明许多复杂疾病的遗传基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Choi, YunHee其他文献

Building on the ideas of others: An examination of the idea combination process
  • DOI:
    10.1016/j.jesp.2011.01.004
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Kohn, Nicholas W.;Paulus, Paul B.;Choi, YunHee
  • 通讯作者:
    Choi, YunHee
What is the best screening test for depression in chronic spinal pain patients?
  • DOI:
    10.1016/j.spinee.2013.10.037
  • 发表时间:
    2014-07-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Choi, YunHee;Mayer, Tom G.;Gatchel, Robert J.
  • 通讯作者:
    Gatchel, Robert J.

Choi, YunHee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Choi, YunHee', 18)}}的其他基金

Statistical methods for joint modeling and dynamic predictions for clustered data
聚类数据联合建模和动态预测的统计方法
  • 批准号:
    RGPIN-2019-06549
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for joint modeling and dynamic predictions for clustered data
聚类数据联合建模和动态预测的统计方法
  • 批准号:
    RGPIN-2019-06549
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for joint modeling and dynamic predictions for clustered data
聚类数据联合建模和动态预测的统计方法
  • 批准号:
    RGPIN-2019-06549
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for joint modeling and dynamic predictions for clustered data
聚类数据联合建模和动态预测的统计方法
  • 批准号:
    RGPIN-2019-06549
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methodologies for Competing Risks
竞争风险的统计方法
  • 批准号:
    RGPIN-2014-06157
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methodologies for Competing Risks
竞争风险的统计方法
  • 批准号:
    RGPIN-2014-06157
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methodologies for Competing Risks
竞争风险的统计方法
  • 批准号:
    RGPIN-2014-06157
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methodologies for Competing Risks
竞争风险的统计方法
  • 批准号:
    RGPIN-2014-06157
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling correlated survival data in genetic and biomedical research
对遗传和生物医学研究中的相关生存数据进行建模
  • 批准号:
    371511-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling correlated survival data in genetic and biomedical research
对遗传和生物医学研究中的相关生存数据进行建模
  • 批准号:
    371511-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: New Pericyclic Methodologies for the Convergent Synthesis of Complex Ring Systems
职业:复杂环系收敛合成的新周环方法
  • 批准号:
    2340210
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
  • 批准号:
    2339266
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Carbonylation Methodologies and Strategies for Building Complex Chemical Structures
构建复杂化学结构的羰基化方法和策略
  • 批准号:
    2349014
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
AI-Driven Methodologies for Automating Operations in 5G/6G Networks
用于 5G/6G 网络中自动化操作的人工智能驱动方法
  • 批准号:
    2903756
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
ASSESS-DHT: Deveploment and Harmonisation of Methodologies for Assessing Digital Health Technologies un Europe
ASSESS-DHT:欧洲数字医疗技术评估方法的开发和协调
  • 批准号:
    10106825
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    EU-Funded
ZEBAI - Innovative methodologies for the design of Zero-Emission and cost-effective Buildings enhanced by Artificial Intelligence
ZEBAI - 通过人工智能增强零排放和具有成本效益的建筑设计的创新方法
  • 批准号:
    10094812
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    EU-Funded
TELEMETRY - Trustworthy mEthodologies, open knowLedgE & autoMated tools for sEcurity Testing of IoT software, haRdware & ecosYstems
遥测 - 值得信赖的方法,开放的知识
  • 批准号:
    10087006
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    EU-Funded
Neolithic Narratives: examining storytelling methodologies, tools, and technologies for enriched visitor engagement
新石器时代叙事:研究讲故事的方法、工具和技术,以丰富游客的参与度
  • 批准号:
    2880843
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
Exploring the utility of deep learning methodologies in the automated surveying of cliff nesting birds
探索深度学习方法在悬崖筑巢鸟类自动测量中的实用性
  • 批准号:
    2840623
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
RUI: Development of New Reagents and Synthetic Methodologies Based on Hypervalent Iodine Chemistry
RUI:基于高价碘化学的新试剂和合成方法的开发
  • 批准号:
    2243793
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了