Mathematics of Conformal Field Theory

共形场论数学

基本信息

  • 批准号:
    RGPIN-2014-06494
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

String theory is our best hope for a `theory-of-everything' in physics. How accurately string theory actually describes the universe is still completely uncertain, but its impact on math is clear, and probably unparalleled in history. My interest is in studying the mathematics inspired by string theory. Instead of string theory itself, I work with a more or less equivalent theory called conformal field theory, because it's much more accessible mathematically. More precisely, there are two main approaches to conformal field theory, but superficially they look very different. Some things are much easier to understand in one approach, other things are much easier in the other. I have become an expert in both. What would be extremely valuable would be a mathematically precise dictionary between them, allowing us to carefully pass constructions, insights, theorems from one to the other. The physics says this should be possible, but this is very hard to see mathematically. Much of my work surrounds understanding, testing, strengthening that dictionary. Canadians have already featured prominently in aspects of this. For example, John McKay discovered a bridge (called Moonshine) between two seemingly unrelated areas: certain algebraic symmetries, and `modular functions' (i.e. functions that live on surfaces). Our best understanding of Moonshine interprets it using conformal field theory. Robert Moody co-discovered what are now called Kac-Moody algebras; perhaps there most important realisation is as symmetries of certain very special string theories. I am very interested in both these aspects.
弦理论是我们对物理学中“万有理论”的最大希望。弦理论究竟能多精确地描述宇宙,仍然完全不确定,但它对数学的影响是清楚的,而且可能是历史上无与伦比的。我的兴趣是研究受弦理论启发的数学。而不是弦理论本身,我用一个或多或少等价的理论,叫做共形场论,因为它在数学上更容易理解。更确切地说,共形场论有两种主要的方法,但表面上看它们非常不同。有些事情在一种方法中更容易理解,其他事情在另一种方法中更容易理解。我已经成为这两方面的专家。在它们之间建立一个数学上精确的字典将是非常有价值的,它允许我们仔细地将构造、见解和定理从一个传递到另一个。物理学认为这是可能的,但这在数学上很难理解。我的大部分工作都围绕着理解、测试和加强这本字典。加拿大人已经在这方面发挥了重要作用。例如,John McKay发现了两个看似无关的领域之间的桥梁(称为Moonshine):某些代数对称和“模函数”(即存在于曲面上的函数)。我们对月光的最好理解是用共形场论来解释它。罗伯特·穆迪(Robert Moody)与人共同发现了现在被称为卡茨-穆迪代数的东西;也许其中最重要的实现是作为某些非常特殊的弦理论的对称性。我对这两个方面都很感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gannon, Terry其他文献

Automorphic forms for triangle groups
  • DOI:
    10.4310/cntp.2013.v7.n4.a4
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Doran, Charles F.;Gannon, Terry;Shokri, Khosro M.
  • 通讯作者:
    Shokri, Khosro M.

Gannon, Terry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gannon, Terry', 18)}}的其他基金

Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics inspired by conformal field theory
受共形场论启发的数学
  • 批准号:
    184054-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics inspired by conformal field theory
受共形场论启发的数学
  • 批准号:
    184054-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    RGPIN-2022-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    DGECR-2022-00449
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
The Mathematics of Conformal Field Theory
共形场论的数学
  • 批准号:
    2108968
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics inspired by conformal field theory
受共形场论启发的数学
  • 批准号:
    184054-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics inspired by conformal field theory
受共形场论启发的数学
  • 批准号:
    184054-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics inspired by conformal field theory
受共形场论启发的数学
  • 批准号:
    184054-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了