Conformal field theory and the nature of symmetry

共形场论和对称性的本质

基本信息

  • 批准号:
    RGPIN-2019-06049
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

String theory is our best hope for a `theory of everything' in physics. How relevant string theory will be to the physics of tomorrow is still uncertain, but its impact on mathematics is clear, and probably unparalleled in history. I study the mathematics inspired by string theory. Instead of string theory itself, I work with a more or less equivalent theory called conformal field theory, because it's much more accessible mathematically. It is an especially friendly example of a quantum field theory, the main language of modern physics. According to Fields' medalist Witten, this is the century when mathematics finally comes to terms with quantum field theory. It is expected that this will be at least as significant for mathematics, as was the coming to terms with calculus in the 18th and 19th centuries. I am exploring the extent to which some of our classical notions, like symmetry, are being disrupted as we understand conformal field theory better. I want to know how significant is this disruption. Though we are being confronted by these new ideas and examples, classical notions still permeate today's theory. Is this a hint that the classical notions are truly foundational and will continue to be relevant, or will we eventually see this as a reactionary bias, an embarrassing prejudice? I will map out some of the range of possibilities allowed in conformal field theory, and judge for myself the role the classical notions appear to deserve. What I am finding is that the coming changes will be profound. Canadian mathematicians have already featured prominently in aspects of this evolving theory. For example, John McKay discovered a bridge (called Moonshine) between two seemingly unrelated areas: certain classical symmetries, and `modular functions' (i.e. functions which live on surfaces). Our best understanding of Moonshine interpolates them using conformal field theory. Robert Moody co-discovered what are now called Kac-Moody algebras; perhaps their most important realization is as symmetries of certain very special (and very classical) conformal field theories. I am very interested in both of these aspects. The thought that I am continuing their legacy inspires me.
弦理论是我们对物理学的“一切理论”的最大希望。弦理论与明天的物理学的相关理论是多么相关,但其对数学的影响很明显,并且在历史上可能是无与伦比的。我研究了受字符串理论启发的数学。我不是弦理论本身,而是与一个或多或少的等效理论一起工作,称为保形场理论,因为它在数学上更容易访问。这是量子场理论的一个特别友好的例子,这是现代物理学的主要语言。根据Fields的奖牌获得者Witten的说法,这是数学最终与量子场理论相关的世纪。可以预期,这对于数学至少将同样重要,而在18世纪和19世纪与微积分也是如此。我正在探索我们的某些古典概念(例如对称性)的程度,因为我们更好地理解保形田地理论。我想知道这种破坏有多重要。尽管我们正面临这些新想法和例子,但古典概念仍然渗透到当今的理论。这是否暗示古典概念是真正的基础并将继续相关的,还是我们最终将其视为反动偏见,令人尴尬的偏见?我将绘制在保形领域理论中允许的一些可能性,并亲自判断古典概念似乎应得的作用。我发现,即将到来的变化将是深刻的。加拿大数学家已经在这种不断发展的理论的方面出名。例如,约翰·麦凯(John McKay)在两个看似无关的区域之间发现了一座桥(称为月光):某些经典对称性和“模块化功能”(即生活在表面上的功能)。我们对月光的最佳理解使用保形场理论可以介入它们。罗伯特·穆迪(Robert Moody)共同发现了现在所谓的kac-moody代数;他们最重要的认识也许是某些非常特殊(且非常经典)的形状理论的对称性。我对这两个方面都非常感兴趣。我继续他们的遗产的想法激发了我的启发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gannon, Terry其他文献

Automorphic forms for triangle groups
  • DOI:
    10.4310/cntp.2013.v7.n4.a4
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Doran, Charles F.;Gannon, Terry;Shokri, Khosro M.
  • 通讯作者:
    Shokri, Khosro M.

Gannon, Terry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gannon, Terry', 18)}}的其他基金

Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics inspired by conformal field theory
受共形场论启发的数学
  • 批准号:
    184054-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics inspired by conformal field theory
受共形场论启发的数学
  • 批准号:
    184054-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于MRE支座的软土场地结构智能隔震理论与方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于MRE支座的软土场地结构智能隔震理论与方法研究
  • 批准号:
    52178295
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
非平衡活性物质系统的势流场地貌理论
  • 批准号:
    11905222
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
跨断层近场地震下高速铁路桥梁结构安全理论研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    231 万元
  • 项目类别:
    联合基金项目
河谷场地地震波传播理论及散射规律研究
  • 批准号:
    51479050
  • 批准年份:
    2014
  • 资助金额:
    84.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
Multilegged amplitudes: from CFT to Higgs production at future colliders
多足振幅:从 CFT 到未来对撞机希格斯粒子的产生
  • 批准号:
    23K19047
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Research on induced twisted representations in conformal field theory with tensor category theory
张量范畴论共形场论中诱导扭曲表示的研究
  • 批准号:
    23KJ0540
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: New Approaches to Conformal Field Theory - Codes, Ensembles, and Complexity
NSF-BSF:共形场论的新方法 - 代码、系综和复杂性
  • 批准号:
    2310426
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Turning up the Temperature in Conformal Field Theory
提高共形场论中的温度
  • 批准号:
    567953-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了