Multiscale modeling of (bio) catalytic systems
(生物)催化系统的多尺度建模
基本信息
- 批准号:RGPIN-2014-06606
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The modeling of complex systems in chemistry, physics, biology, materials science and related interdisciplines has taken great strides in recent years. In the areas of interest to this proposal, advances in quantum chemistry, in molecular mechanics and molecular dynamics, in statistical and stochastic methodologies and in the treatment of kinetic networks are merging. And an embryonic systems approach is emerging. Some of the most interesting frontier work is interdisciplinary and integrative in nature and requires theories and methodologies that span large ranges on spatial and temporal scales. The long-term goal of my research program is to contribute to the development of such multi-scale modeling methodologies, to their implementation in efficient computer codes, and their application to catalytically-driven processes in complex biological and energy-related environments. Success would lead to better understanding of biological systems, of how biochemical reactions are coupled to larger scale properties of cellular components and of how they work together. In the area of electron-transfer between proteins, we have successfully elucidated the role of water in modulating the electron transfer between the proteins MADH and Amicyanin. We have developed a methodology to compute the effects of quantum decoherence on the rates. In the upcoming grant cycle we will extend this work to other examples of protein pairs and also work on methodology to remove the empirical aspects of the tunneling pathway approach. We will start a new project on proton transfers in the respiratory chain, which will require methodology for nuclear quantum effects and extend the project to proton-coupled electron transfers. We have explored the reaction network for biological transcription and translation using empirical rate constants. Quantum Mechanical/Molecular Mechanical (QM/MM) simulations have been carried out for various steps in the formation of m-RNA by RNA Polymerase. Conformational changes have been identified and the chemical reaction has been mapped out using a rapid semi-empirical quantum mechanical method. The project will be extended to important mutants and also the effects on RNA reactions of substituting the catalytically important Mg ions by other metals, starting with Fe. The methods can also be used to understand petroleum chemistry under realistic conditions, such as those in heavy oil deposits or in the oil sands. New ultradispersed catalysts will be designed by a combined computational-experimental (in collaboration with Pereira's group) approach so that some of the important chemistry can be done underground, with less impact on the environment. So far, we have explored the potential energy surface for the hydrogenation of benzene as a model molecule using Density Functional Theory with both periodic and cluster models. Simulations and benchmarking of two rapid semiempirical methods (DFTB and TBQCMD) are ongoing. Preliminary DFTB simulations on a model including hydrocarbon, nanocatalyst and a silica (sand) model have shown that a Mo2C nanoparticle can dissociate hydrogen and crack hexadecane. Extensions to hydrogenation and cracking of polyaromatic hydrocarbons are planned. Calculations of the free energy profiles for selected reactions will be carried out with QM/MM methodology using DFTB/CHARMM and umbrella sampling. As a high-risk, speculative, element of my research program (10-15% effort) I am collaborating with Stuart Kauffman and Gabor Vattay on using the eigenvalue spectra of molecules to situate them in the "poised realm" which has axes, X going from ordered to critical to chaotic and Y measuring the extent of quantum decoherence. Preliminary results show that biological molecules tend to be critical.
近年来,在化学、物理、生物、材料科学和相关交叉学科中,复杂系统的建模取得了长足的进步。在这一建议感兴趣的领域,量子化学、分子力学和分子动力学、统计和随机方法以及动力学网络处理方面的进展正在融合。一种萌芽的系统方法正在出现。一些最有趣的前沿工作本质上是跨学科和综合性的,需要在空间和时间尺度上跨越大范围的理论和方法论。我的研究计划的长期目标是促进这种多尺度建模方法的发展,在有效的计算机代码中实现它们,并将其应用于复杂生物和能源相关环境中的催化驱动过程。 成功将导致更好地理解生物系统,生物化学反应如何与细胞成分的更大规模特性相结合,以及它们如何协同工作。 在蛋白质之间的电子转移方面,我们已经成功地阐明了水在调节蛋白质MADH和Amicyanin之间的电子转移中的作用。我们已经开发了一种方法来计算量子退相干的影响的速率。在即将到来的资助周期中,我们将把这项工作扩展到蛋白质对的其他例子,并研究方法学,以消除隧道途径方法的经验方面。我们将开始一个关于呼吸链中质子转移的新项目,这将需要核量子效应的方法,并将该项目扩展到质子耦合电子转移。 我们已经探索了反应网络的生物转录和翻译使用经验速率常数。量子力学/分子力学(QM/MM)模拟已经进行了各种步骤中形成的mRNA的RNA聚合酶。构象变化已被确定和化学反应已被映射出使用快速半经验量子力学方法。该项目将扩展到重要的突变体,以及用其他金属(从Fe开始)取代催化重要的Mg离子对RNA反应的影响。 这些方法也可用于了解实际条件下的石油化学,例如重油矿床或油砂中的石油化学。新的超分散催化剂将通过计算-实验相结合的方法(与佩雷拉的小组合作)设计,以便一些重要的化学反应可以在地下进行,对环境的影响较小。到目前为止,我们已经探索了势能面的苯加氢作为一个模型分子使用密度泛函理论与周期和集团模型。两种快速半经验方法(DFTB和TBQCMD)的模拟和基准测试正在进行中。在包括烃、纳米催化剂和二氧化硅(砂)模型的模型上进行的初步DFTB模拟表明,Mo 2C纳米颗粒可以解离氢并裂解十六烷。计划扩大多环芳烃的氢化和裂解。将使用DFTB/CHARMM和伞形取样,采用QM/MM方法计算选定反应的自由能分布。 作为我的研究计划的一个高风险,投机性的元素(10-15%的努力),我正在与Stuart Kauffman和Gabor Vattay合作,使用分子的本征值光谱将它们置于“平衡领域”中,该领域具有轴,X从有序到临界再到混沌,Y测量量子退相干的程度。初步结果表明,生物分子往往是关键的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salahub, Dennis其他文献
Dioxygen Activation by Mononuclear Copper Enzymes: Insights from a Tripodal Ligand Mimicking Their CuM Coordination Sphere
- DOI:
10.1021/ic900567z - 发表时间:
2009-08-03 - 期刊:
- 影响因子:4.6
- 作者:
de la Lande, Aurelien;Salahub, Dennis;Parisel, Olivier - 通讯作者:
Parisel, Olivier
Salahub, Dennis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salahub, Dennis', 18)}}的其他基金
Multiscale modeling of (bio)catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2019-03976 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale modeling of (bio)catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2019-03976 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale modeling of (bio)catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2019-03976 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale modeling of (bio)catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2019-03976 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Hydrorefined fuel - computational insight into the mechanism
加氢精制燃料 - 通过计算了解其机理
- 批准号:
525598-2018 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Engage Plus Grants Program
Multiscale modeling of (bio) catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2014-06606 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale modeling of (bio) catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2014-06606 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Hydrorefined fuel - computational insight into the mechanism
加氢精制燃料 - 通过计算了解其机理
- 批准号:
517592-2017 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Engage Grants Program
Multiscale modeling of (bio) catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2014-06606 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale modeling of (bio) catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2014-06606 - 财政年份:2015
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
ABM有效性检验的关键技术研究
- 批准号:70701001
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Multiscale modeling of (bio)catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2019-03976 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale modeling of (bio)catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2019-03976 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale modeling of (bio)catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2019-03976 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale modeling of (bio)catalytic systems
(生物)催化系统的多尺度建模
- 批准号:
RGPIN-2019-03976 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
DGECR-2018-00014 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Launch Supplement
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual