Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations

边值常微分方程和抛物型偏微分方程误差控制数值求解软件

基本信息

  • 批准号:
    946-2012
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Along with theoretical and experimental science, computational modeling is now viewed as a third fundamental branch of scientific inquiry. A majority of computational models, arising in such areas as chemistry, physics, biology, and finance, involve complex systems of differential equations (DEs), for which approximate solutions are obtained through the use of sophisticated numerical software. Because the numerical solutions are approximate, it is essential that the software also assess the quality of the computed solution. Two popular types of assessment are the global error (the difference between the approximate and exact solutions) and the defect (the amount by which the numerical solution fails to satisfy the equations). Good quality software will adapt a computation so that the numerical solution can be obtained efficiently and so that an estimate of the global error or defect satisfies a user-provided tolerance. Our research will focus on numerical software for the efficient and accurate solution of types of DEs, known as boundary value ordinary DEs (BVODEs) and parabolic partial DEs (PDEs), that features adaptive control of efficiently computed estimates of the global error and/or defect. One major goal of our work is to develop software, for parabolic PDEs that depend on time and two spatial dimensions, that will employ high accuracy methods in time and space to adaptively control accurate and efficiently computed estimates of the spatial and temporal errors. A second major goal is to investigate software for BVODEs that employs hybrid global error/defect control and to develop new algorithms and software to extend the problem class currently treatable by BVODE solvers to include, e.g., problems with periodic boundary conditions or with delay and advance terms. The significance of this work is that it will improve the ease-of-use, efficiency, robustness, and capability of software for the numerical solution of BVODEs and PDEs, thereby improving the tools available to help computational scientists efficiently treat sophisticated computational models arising in their areas of investigation.
沿着理论和实验科学,计算建模现在被视为科学探究的第三个基本分支。在化学、物理、生物和金融等领域中出现的大多数计算模型都涉及复杂的微分方程(DE)系统,其近似解是通过使用复杂的数值软件获得的。 由于数值解是近似的,因此软件还必须评估计算解的质量。两种流行的评估类型是全局误差(近似解和精确解之间的差异)和缺陷(数值解不满足方程的量)。高质量的软件将调整计算,使得可以有效地获得数值解,并且使得全局误差或缺陷的估计满足用户提供的公差。 我们的研究将集中在数值软件的有效和准确的解决方案类型的DE,被称为边界值普通DE(BVODE)和抛物偏DE(PDE),其功能自适应控制的有效计算的估计的全局误差和/或缺陷。我们的工作的一个主要目标是开发软件,抛物偏微分方程,依赖于时间和两个空间维度,这将采用高精度的方法在时间和空间自适应控制准确和有效地计算估计的空间和时间误差。第二个主要目标是研究采用混合全局误差/缺陷控制的BVODE软件,并开发新的算法和软件来扩展目前可由BVODE求解器处理的问题类别,例如,具有周期边界条件或延迟和提前项的问题。这项工作的意义在于,它将提高易用性,效率,鲁棒性和能力的软件的数值解的BVODEs和偏微分方程,从而改善工具,可帮助计算科学家有效地处理复杂的计算模型在他们的调查领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muir, Paul其他文献

Rapid Development of Anterotibial Compartment Syndrome and Rhabdomyolysis in a Patient with Primary Hypothyroidism and Adrenal Insufficiency
  • DOI:
    10.1089/thy.2011.0136
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Muir, Paul;Choe, Michelle S.;Croxson, Michael S.
  • 通讯作者:
    Croxson, Michael S.
Transcriptional activity and strain-specific history of mouse pseudogenes
  • DOI:
    10.1038/s41467-020-17157-w
  • 发表时间:
    2020-07-29
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Sisu, Cristina;Muir, Paul;Gerstein, Mark
  • 通讯作者:
    Gerstein, Mark

Muir, Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muir, Paul', 18)}}的其他基金

Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations
边值常微分方程和抛物型偏微分方程误差控制数值求解软件
  • 批准号:
    946-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations
边值常微分方程和抛物型偏微分方程误差控制数值求解软件
  • 批准号:
    946-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations
边值常微分方程和抛物型偏微分方程误差控制数值求解软件
  • 批准号:
    946-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations
边值常微分方程和抛物型偏微分方程误差控制数值求解软件
  • 批准号:
    946-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Robustness and efficiency improvements and problem class extensions for numerical software for differential equations
微分方程数值软件的鲁棒性和效率改进以及问题类别扩展
  • 批准号:
    946-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
  • 批准号:
    11001280
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
A Multicenter Randomized Controlled Trial of a Patient Safety Reporting Intervention for Families to Improve Medical Error Detection and Reduce Inequities
针对家庭的患者安全报告干预措施的多中心随机对照试验,以改善医疗错误检测并减少不平等
  • 批准号:
    10599206
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
A Multicenter Randomized Controlled Trial of a Patient Safety Reporting Intervention for Families to Improve Medical Error Detection and Reduce Inequities
针对家庭的患者安全报告干预措施的多中心随机对照试验,以改善医疗错误检测并减少不平等
  • 批准号:
    10444085
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations
边值常微分方程和抛物型偏微分方程误差控制数值求解软件
  • 批准号:
    946-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Error-controlled model order reduction by adaptive and cumulative choice of expansion points in Krylov subspace methods
通过 Krylov 子空间方法中扩展点的自适应和累积选择来降低误差控制模型阶数
  • 批准号:
    256173540
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Research Grants
Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations
边值常微分方程和抛物型偏微分方程误差控制数值求解软件
  • 批准号:
    946-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了