Error-controlled model order reduction by adaptive and cumulative choice of expansion points in Krylov subspace methods
通过 Krylov 子空间方法中扩展点的自适应和累积选择来降低误差控制模型阶数
基本信息
- 批准号:256173540
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project goal is to develop an efficient Krylov subspace method for model order reduction, which is suited for the automatic simplification of even very large-scale state space models. It does not require intervention by the user and assures compliance with given requirements on the approximation quality.Large mathematical models of this kind typically result from the spatial discretization of partial differential equations, which allow for the description of dynamic systems in various engineering domains; this procedure is often indispensable for simulation, control and optimization purposes. The dimension of the model, however, grows with increasing demands on its accuracy; to complete the mentioned tasks, a simplification of the model is therefore frequently inevitable. Numerous methods for this purpose have been described in the literature (e.g. modal or balanced truncation, POD and Krylov subspace methods) which exhibit specific advantages and disadvantages. Balanced truncation, for instance, features a priori error bounds and preservation of system properties, while Krylov subspace methods require less numerical effort (with regard to computation time and storage) and are therefore more practical for the reduction of very large original models.Starting from a novel formulation of the approximation error that results from the reduction, the project aims to remedy the main drawbacks of Krylov subspace methods. Among those is the possible loss of stability, which can be avoided by (optimal) pole placement. Secondly, Krylov subspace methods require the choice of so-called shifts (or expansion points), which is now carried out by an iterative framework ("salami technique") in a cumulative and automatic manner; unlike established methods like IRKA, this procedure includes the adaptive determination of the reduced system dimension. Finally, interpolatory methods generally do not deliver reliable information on the achieved approximation quality. Global upper bounds with respect to common system norms are, however, newly available for Krylov subspace methods and deliver rigorous error information for at least a certain class of state space models.During the intended project, this concept shall be further developed into a complete model reduction method. The main goals are the automatic and cumulative choice of expansion points (without interaction with the user), the minimization of the overestimation of the true error by the upper bounds, the generalization towards the multi-variable (MIMO) case as well as the customization of the method for second order systems. Case studies using academic examples as well as models from joint projects provide the validation of the new method, in particular with respect to its industrial applicability.
该项目的目标是开发一个有效的Krylov子空间方法模型降阶,这是适合于自动简化,甚至非常大规模的状态空间模型。它不需要用户干预,并确保符合给定的近似质量要求。这类大型数学模型通常来自偏微分方程的空间离散化,它允许描述各种工程领域的动态系统;这一过程通常是不可缺少的仿真,控制和优化目的。然而,模型的尺寸随着对其准确性的要求的增加而增加;为了完成上述任务,模型的简化因此常常是不可避免的。在文献中已经描述了用于此目的的许多方法(例如,模态或平衡截断、POD和Krylov子空间方法),这些方法表现出特定的优点和缺点。平衡截断,例如,具有先验误差界和系统属性的保护,而Krylov子空间方法需要更少的数值工作(在计算时间和存储方面),因此更实用的减少非常大的原始models.Starting从一个新的配方的近似误差,从减少的结果,该项目旨在弥补Krylov子空间方法的主要缺点。其中之一是可能的稳定性损失,这可以通过(最佳)极点配置来避免。其次,Krylov子空间方法需要选择所谓的位移(或扩展点),这现在是通过迭代框架(“萨拉米技术”)以累积和自动的方式进行的;与IRKA等已建立的方法不同,该过程包括自适应确定降低的系统维数。最后,插值方法通常不提供关于所实现的近似质量的可靠信息。然而,Krylov子空间方法最近可获得关于共同系统范数的全局上界,并为至少某类状态空间模型提供严格的误差信息,在预期项目期间,这一概念将进一步发展为完整的模型降阶方法。主要目标是扩展点的自动和累积选择(无需与用户交互),最小化上界对真实误差的高估,对多变量(MIMO)情况下的推广以及二阶系统方法的定制。案例研究使用学术的例子,以及从联合项目的模型提供了新方法的验证,特别是在其工业适用性。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast H2-optimal model order reduction exploiting the local nature of Krylov-subspace methods
- DOI:10.1109/ecc.2016.7810578
- 发表时间:2016-06
- 期刊:
- 影响因子:0
- 作者:A. Castagnotto;H. Panzer;B. Lohmann
- 通讯作者:A. Castagnotto;H. Panzer;B. Lohmann
An Approach for Globalized H2-Optimal Model Reduction
全球化 H2 最优模型简化方法
- DOI:10.1016/j.ifacol.2018.03.034
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:A. Castagnotto;B. Lohmann
- 通讯作者:B. Lohmann
A new framework for -optimal model reduction
- DOI:10.1080/13873954.2018.1464030
- 发表时间:2017-09
- 期刊:
- 影响因子:1.9
- 作者:A. Castagnotto;B. Lohmann
- 通讯作者:A. Castagnotto;B. Lohmann
sss & sssMOR: Analysis and reduction of large-scale dynamic systems in MATLAB
- DOI:10.1515/auto-2016-0137
- 发表时间:2017-02
- 期刊:
- 影响因子:0
- 作者:A. Castagnotto;M. C. Varona;Lisa Jeschek;B. Lohmann
- 通讯作者:A. Castagnotto;M. C. Varona;Lisa Jeschek;B. Lohmann
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Boris Lohmann其他文献
Professor Dr.-Ing. Boris Lohmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Boris Lohmann', 18)}}的其他基金
New degrees of freedom and rigorous error bounds for the structure-preserving model order reduction of port-Hamiltonian systems
端口哈密尔顿系统的结构保持模型降阶的新自由度和严格误差界限
- 批准号:
418612884 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Numerical and experimental optimization of local visco-elastic damping layer placements for design of calm, smart and smooth structures
局部粘弹性阻尼层布置的数值和实验优化,用于设计平静、智能和平滑的结构
- 批准号:
314987946 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Adaptive Regelung hybrider Fahrwerkssysteme
混合动力底盘系统的自适应控制
- 批准号:
180057338 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Parametrische Ordnungsreduktion durch Interpolation
通过插值降低参数阶数
- 批准号:
191319493 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Passivitätsbasierte Regelung strukturumschaltender nichtlinearer Systeme
结构切换非线性系统的无源控制
- 批准号:
137996285 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Dezentraler Beobachterentwurf für digital vernetzte dynamische Systeme
数字网络动态系统的分散观测器设计
- 批准号:
43004606 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Reduktion linearer und nichtlinearer Systeme zweiter Ordnung
二阶线性和非线性系统的约简
- 批准号:
5434244 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Modellreduktion für die Simulation mikrosystemtechnischer Komponenten insbesondere bei mikrofluidischen Antriebssystemen
用于微系统组件仿真的模型简化,尤其是微流体驱动系统
- 批准号:
5370450 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Grants
Strukturvereinfachung und Ordnungsreduktion nichtlinearer Systemmodelle - Ein methodischer Zugang unter Anwendung Genetischer Algorithmen
非线性系统模型的结构简化和降阶 - 使用遗传算法的方法论途径
- 批准号:
5356373 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Property-controlled process design of freeform bending considering material properties of the semi-finished product
考虑半成品材料特性的自由弯曲性能控制工艺设计
- 批准号:
424334318 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
槲皮素控释系统调控Mettl3/Per1修复氧化应激损伤促牙周炎骨再生及机制研究
- 批准号:82370921
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
肿瘤翻译调控蛋白调控大肠癌细胞转移能力的信号机制研究
- 批准号:81000952
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
多肽树状物为载体的抗癌前体药物的合成和研究
- 批准号:81072530
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
植物病毒壳体"智能"纳米载体靶向肿瘤细胞的研究
- 批准号:30973685
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
高臭氧浓度下水稻颖花和粒重形成受阻及其成因-FACE研究
- 批准号:30871486
- 批准年份:2008
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Microbiome targeted oral butyrate therapy in Gulf War multisymptom illness
微生物组靶向口服丁酸盐治疗海湾战争多症状疾病
- 批准号:
10367805 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Intermittent Fasting using a Fasting-Mimetic Diet to Improve Prostate Cancer Control and Metabolic Outcomes
使用模拟禁食饮食进行间歇性禁食以改善前列腺癌控制和代谢结果
- 批准号:
10639416 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying and modeling immune correlates of protection against congenital CMV transmission after primary maternal infection
原发性母体感染后预防先天性巨细胞病毒传播的免疫相关性的识别和建模
- 批准号:
10677439 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Advancing the Conversations Helpful for Awareness of Illness Trajectory (CHAT) Intervention
推进对话有助于提高疾病轨迹 (CHAT) 干预意识
- 批准号:
10668058 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cognitive control targets for the treatment of obsessive compulsive disorder in young children
治疗幼儿强迫症的认知控制目标
- 批准号:
10647416 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Technology Assisted Treatment for Binge Eating Behavior
暴食行为的技术辅助治疗
- 批准号:
10603975 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Pilot Study to Evaluate the Anabolic Effect of Testosterone on Muscles of the Pelvic Floor in Older Women with Stress Urinary Incontinence
评估睾酮对患有压力性尿失禁的老年女性盆底肌肉合成代谢影响的初步研究
- 批准号:
10716432 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
-- - 项目类别:
2/2 Multi-Center CLEAN AIR 2 Randomized Control Trial in COPD
2/2 慢性阻塞性肺病多中心 CLEAN AIR 2 随机对照试验
- 批准号:
10722232 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




