Adversarial knowledge discovery
对抗性知识发现
基本信息
- 批准号:5532-2011
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Adversarial knowledge discovery builds models from data in settings where the interests of those doing the modelling are not aligned with the interests of some of those being modelled. This includes law enforcement, counterterrorism, border control, fraud, anti-money-laundering and, increasingly, mainstream domains such as customer relationship management. Criminal activity costs Canada perhaps as much as 6% of GDP, billions of dollars per year; and some crime and terrorism also has costs in property damage, injuries, and lives lost.
At present, the process of understanding the actions of adversaries from the traces they leave in data is driven by analysts who interrogate the data for patterns that they think may be significant. This is laborious and requires analysts to be skilled, experienced, and creative. Their results can be improved substantially by adding an inductive component -- constructing plausible models algorithmically from the data, and asking analysts to assess them.
This is commonplace in mainstream knowledge discovery, but more difficult in adversarial settings because likely patterns are harder to discover: because adversaries are actively trying to vary their activities, because they are trying to conceal themselves from analysis, and because they may be trying to manipulate the analysis process. The next stage of my work in this area tackles four problems: (1) finding algorithms to rank data records without assumptions, based on 'interestingness' so that analyst attention can be focused on the critical few; (2) extracting information from text in a deeper way,taking ideas about how we, as humans, generate language and making them algorithmic; (3) extracting richer information from graph-structured data (for example, relational connections among people based on their interactions; and (4) algorithmically discovering potential meanings of clusters and other structures in data.
Progress in solving these problems will make Canada safer, will reduce the risks to our population from criminal and terrorist violence, and reduce the substantial economic cost of crime and fraud.
对抗性知识发现从数据中构建模型,在这种情况下,建模者的利益与一些被建模者的利益不一致。这包括执法、反恐、边境管制、欺诈、反洗钱以及越来越多的主流领域,如客户关系管理。犯罪活动每年给加拿大造成的损失可能高达国内生产总值的6%,数十亿美元;一些犯罪和恐怖主义也造成财产损失、伤害和生命损失。
目前,从对手在数据中留下的痕迹中理解对手行动的过程是由分析师驱动的,他们询问数据,寻找他们认为可能重要的模式。这是费力的,需要分析师熟练,有经验和创造性。他们的结果可以通过增加一个归纳成分来大大改善-从数据中通过算法构建合理的模型,并要求分析师评估它们。
这在主流知识发现中很常见,但在对抗性环境中更困难,因为可能的模式更难发现:因为对手正在积极地尝试改变他们的活动,因为他们试图隐藏自己的分析,因为他们可能试图操纵分析过程。我在这一领域的下一阶段工作要解决四个问题:(1)找到算法来对数据记录进行排名,而不需要假设,基于“兴趣度”,这样分析师的注意力就可以集中在关键的少数人身上;(2)以更深的方式从文本中提取信息,了解我们作为人类如何生成语言,并使它们成为算法;(3)从图形结构数据中提取更丰富的信息(例如,基于交互的人与人之间的关系连接);(4)通过算法发现数据中聚类和其他结构的潜在含义。
在解决这些问题方面取得进展将使加拿大更加安全,将减少犯罪和恐怖主义暴力对我国人民的风险,并减少犯罪和欺诈的巨大经济成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Skillicorn, David其他文献
Skillicorn, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Skillicorn, David', 18)}}的其他基金
Cybersecurity Training for Defending Canada's Government, Critical Infrastructure, Businesses, and Citizens
保卫加拿大政府、关键基础设施、企业和公民的网络安全培训
- 批准号:
528274-2019 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Training Experience
Adversarial Data Analytics for National Security
国家安全的对抗性数据分析
- 批准号:
RGPIN-2016-04888 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Cybersecurity Training for Defending Canada's Government, Critical Infrastructure, Businesses, and Citizens
保卫加拿大政府、关键基础设施、企业和公民的网络安全培训
- 批准号:
528274-2019 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Training Experience
Adversarial Data Analytics for National Security
国家安全的对抗性数据分析
- 批准号:
RGPIN-2016-04888 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Adversarial Data Analytics for National Security
国家安全的对抗性数据分析
- 批准号:
RGPIN-2016-04888 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Cybersecurity Training for Defending Canada's Government, Critical Infrastructure, Businesses, and Citizens
保卫加拿大政府、关键基础设施、企业和公民的网络安全培训
- 批准号:
528274-2019 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Training Experience
Adversarial Data Analytics for National Security
国家安全的对抗性数据分析
- 批准号:
RGPIN-2016-04888 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Adversarial Data Analytics for National Security
国家安全的对抗性数据分析
- 批准号:
RGPIN-2016-04888 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Adversarial Data Analytics for National Security
国家安全的对抗性数据分析
- 批准号:
RGPIN-2016-04888 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Adversarial knowledge discovery
对抗性知识发现
- 批准号:
5532-2011 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Towards knowledge discovery from imperfect and evolving data
从不完美和不断发展的数据中发现知识
- 批准号:
DP240103070 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Projects
CAREER: Statistically-Sound Knowledge Discovery from Data
职业:从数据中发现统计上合理的知识
- 批准号:
2238693 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Travel: Student Support for the 2023 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023)
旅行:2023 年 ACM SIGKDD 知识发现和数据挖掘会议 (KDD 2023) 的学生支持
- 批准号:
2323492 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Centrally-linked longitudinal peripheral biomarkers of AD in multi-ethnic populations
多种族人群中 AD 的中心连锁纵向外周生物标志物
- 批准号:
10555723 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Knowledgebase of Escherichia coli Genome and Metabolism
大肠杆菌基因组和代谢知识库
- 批准号:
10716050 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Development of serologic test for early risk stratification of islet autoimmunity in genetically predisposed T1D individuals
开发用于遗传易感性 T1D 个体胰岛自身免疫早期风险分层的血清学检测
- 批准号:
10760885 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Discovery of neoepitope immunotherapeutic targets in diffuse pediatric high-grade gliomas
弥漫性儿童高级别胶质瘤中新表位免疫治疗靶点的发现
- 批准号:
10774404 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Elucidating the role of DCAF7 on hematopoietic stem cell maintenance
阐明 DCAF7 对造血干细胞维持的作用
- 批准号:
10785443 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:
10785755 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:














{{item.name}}会员




