Topics in Statistical Modelling and Inference

统计建模和推理主题

基本信息

  • 批准号:
    105557-2012
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

A statistical model contributes to the understanding of the structure of a system or a process in various fields of engineering and sciences. One of the most important tasks in statistics is to develop methodologies and theories to build a statistical model for data. Such a model is not unique in general. For a given set of competing models, the key issue is then how to select a best approximating model from these models. Statistical assumptions are often made to model a data set. However these assumptions may not hold and the data are subject to error from various sources. Since quality verification of a large data set is a formidable task and is hardly done by manual inspection, there are great needs to develop statistical modelling methods that are resistant to outliers and stable in respect to deviations from various assumptions. In the development of such robust methods, M-estimation or estimating equation-based procedures can play important and complementary roles. The objective of the proposed research is to advance the study in statistical modelling and inference. The emphasis is put on performing theoretical investigations, and developing M-estimation and estimating equation-based procedures as well as fast computational algorithms to tackle the problems in model selection, change-point analysis, cluster analysis, regime-switching modelling, spatio-temporal modelling, inference for data that have complex structure and/or missing observations and/or high dimensionality. The advancements achieved under the proposed research will produce significant impact in statistical modelling and inference, and their applications in practice.
统计模型有助于理解工程和科学各个领域中的系统或过程的结构。统计学中最重要的任务之一是发展方法和理论来建立数据的统计模型。这样的模式一般来说并不独特。对于给定的一组竞争模型,关键问题是如何从这些模型中选择最佳近似模型。 统计假设通常用于对数据集进行建模。然而,这些假设可能不成立,数据可能会受到各种来源的误差的影响。由于大型数据集的质量验证是一项艰巨的任务,并且很难通过人工检查完成,因此迫切需要开发出抗离群值且在与各种假设的偏差方面稳定的统计建模方法。在这种稳健方法的开发中,M-估计或基于估计方程的程序可以发挥重要的补充作用。 拟议研究的目的是推进统计建模和推断的研究。重点是进行理论研究,并开发M-估计和估计方程为基础的程序,以及快速计算算法,以解决模型选择,变点分析,聚类分析,政权切换建模,时空建模,推理的数据,具有复杂的结构和/或丢失的观测和/或高维的问题。 在拟议研究中取得的进展将对统计建模和推断及其在实践中的应用产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wu, Yuehua其他文献

Consistent and powerful graph-based change-point test for high-dimensional data
Strong convergence rate of estimators of change point and its application
Consistent two-stage multiple change-point detection in linear models
线性模型中一致的两阶段多变点检测
Bayesian spatiotemporal modeling for blending in situ observations with satellite precipitation estimates
将现场观测与卫星降水估计相结合的贝叶斯时空模型
A novel and fast methodology for simultaneous multiple structural break estimation and variable selection for nonstationary time series models
一种新颖且快速的方法,用于非平稳时间序列模型的同时多重结构断裂估计和变量选择
  • DOI:
    10.1007/s11222-011-9304-6
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Jin, Baisuo;Shi, Xiaoping;Wu, Yuehua
  • 通讯作者:
    Wu, Yuehua

Wu, Yuehua的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wu, Yuehua', 18)}}的其他基金

Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference
统计建模和推理主题
  • 批准号:
    105557-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference
统计建模和推理主题
  • 批准号:
    105557-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference
统计建模和推理主题
  • 批准号:
    105557-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in M-estimation, model selection and modelling
M 估计、模型选择和建模主题
  • 批准号:
    105557-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference
统计建模和推理主题
  • 批准号:
    105557-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference
统计建模和推理主题
  • 批准号:
    105557-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference
统计建模和推理主题
  • 批准号:
    105557-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Dimensionality Reduction in Nonparametric Statistical Modelling
非参数统计建模中的降维主题
  • 批准号:
    0505561
  • 财政年份:
    2005
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了