Topics in Dimensionality Reduction in Nonparametric Statistical Modelling

非参数统计建模中的降维主题

基本信息

  • 批准号:
    0505561
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The investigator plans to conduct research on identifying structure in multivariate data without imposing rigid structural assumptions and on the development of structural adaptation techniques for dimensionality reduction in nonparametric regression and density estimation. Building on recent advances in nonparametric and semiparametric estimation, it is proposed to develop iterative algorithms which alternate between identification of the lower dimensional structure, using estimates of average derivative functionals, and model estimation improved by using the current structural information. Identification and estimation of linear and nonlinear components in partially linear regression models and of independent component analysis model with unspecified component densities will be considered.With the dramatic increase in large, complex data bases and in computer power, it has become increasingly more desirable and possible to develop nonparametric models, concepts, and procedures that can be used to study relationships between variables and to construct models without relying on rigid parametric assumptions on the structure of mean responses and error distributions. Algorithms developed in this research will provide new statistical learning tools for reducing dimensionality of multivariate data in order to identify and visualize its structure. After the algorithms are investigated on simulated data and their parameters are fine-tuned, they will be applied to statistical learning problems from bioinformatics, risk management, and other areas.
调查员计划进行研究,以确定结构的多变量数据,而不强加严格的结构假设和结构适应技术的发展,在非参数回归和密度估计的降维。 在非参数和半参数估计的最新进展的基础上,提出了开发迭代算法,该算法交替使用平均导数泛函的估计来识别低维结构,并通过使用当前的结构信息来改进模型估计。 本文将讨论部分线性回归模型和独立成分分析模型中线性和非线性成分的识别和估计。随着大型复杂数据库和计算机能力的急剧增加,越来越需要和可能开发非参数模型、概念、和程序,可用于研究变量之间的关系,并建立模型,而不依赖于严格的参数假设的结构上的平均响应和误差分布。本研究中开发的算法将提供新的统计学习工具,用于降低多变量数据的维数,以识别和可视化其结构。 在对模拟数据进行研究并对其参数进行微调后,它们将被应用于生物信息学,风险管理和其他领域的统计学习问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Samarov其他文献

Alexander Samarov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Samarov', 18)}}的其他基金

Topics in Nonparametric Analysis and Model Building
非参数分析和模型构建主题
  • 批准号:
    9971579
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Topics in Nonparametric Analysis and Model Building
非参数分析和模型构建主题
  • 批准号:
    9626348
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
  • 批准号:
    9306245
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Exploring Regression Structure Using Nonparamentric Functional Estimation
数学科学:使用非参数泛函估计探索回归结构
  • 批准号:
    9001523
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: A Local Minimax Mean Square Error Approach to Robust Regression, and Related Problems
数学科学:鲁棒回归的局部极小极大均方误差方法及相关问题
  • 批准号:
    8408971
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
  • 批准号:
    22KK0226
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Sensitivity analysis on Deep Learning (DL)-based dimensionality reduction methods of scRNA-seq data
基于深度学习 (DL) 的 scRNA-seq 数据降维方法的敏感性分析
  • 批准号:
    572254-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
First-principles calculations of two-particle response realized by dimensionality reduction
降维实现双粒子响应的第一性原理计算
  • 批准号:
    21H01003
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Clarification of Cool Flame Dynamics by Deep Learning as Dimensionality Reduction Technique
通过深度学习作为降维技术来阐明冷火焰动力学
  • 批准号:
    21K14347
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient Methods for Dimensionality Reduction ofSingle-Cell RNA-Sequencing Data
单细胞 RNA 测序数据降维的有效方法
  • 批准号:
    10356883
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Dimensionality reduction and intrinsic dimension.
降维和内在维度。
  • 批准号:
    2431450
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Analyzing the phase-space dynamics of 5D distribution functions using the dimensionality reduction technique
使用降维技术分析 5D 分布函数的相空间动力学
  • 批准号:
    20K14441
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A mathematical study of dimensionality reduction and embedding by theories of delay-coordinate systems and algebraic geometry
延迟坐标系和代数几何理论降维和嵌入的数学研究
  • 批准号:
    20K03747
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OAC Core: Small: Scalable Non-linear Dimensionality Reduction Methods to Accelerate Scientific Discovery
OAC 核心:小型:加速科学发现的可扩展非线性降维方法
  • 批准号:
    1910539
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
  • 批准号:
    1841805
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了