Multimodal Mobility Modeling and Traffic Profiling in Cyber-Physical Systems
网络物理系统中的多模式移动建模和流量分析
基本信息
- 批准号:184129-2012
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main objective of this research work is to investigate the use of mobile devices along with cellular wireless networks and other sensing technology to estimate mobility and to build robust tempro-spatial mobility models. Transportation systems will be considered as a target application. Extracting a mobility model for individuals enables the profiling of traffic conditions and hence can facilitate a wide range of transportation applications: vehicle routing, optimized traffic lights signalling, road maintenance planning, and congestion management.
Soft-Computing inferencing and filtering methods offer a range of capabilities for modeling mobility. However, since mobility is generally a non-linear dynamic process, a small non-linearity can lead to difficulties to represent the posterior knowledge. To investigate such challenges, Bayesian filtering and sequential Monte-Carlo methods such as particle filters will be employed. The Bayesian methods will be employed to tackle two open issues: a) wireless localization based on signal profiling (e.g, fingerprints and RSS; b) simultaneous localization and mapping. Comprehensive Sensing methods are explored to address the sparse signals issue present in such systems. A diverse range of data sources, such as cellular networks, cell-phones, road cameras, on-board GPS devices, loop detectors, and mobile augmented reality models, will be studied as complementary mobility cues. To exploit multi-modality to its utmost potential, the proposed research work will investigate several data fusion techniques for inferencing and estimating mobility and traffic trends. Here, the proposed research project will adopt a soft-computing as reasoning approach, where probabilistic techniques are used to capture trends from mobility data and fuzzy and Dempster-Shafer techniques offer linguistic paradigms for reasoning about uncertainty in the captured mobility and traffic data. Particles, Kalman, GMF, and HMM filters will be employed at various levels of the proposed modeling scheme; to address sparsity in the measurements Compressing Sensing techniques will be investigated.
这项研究工作的主要目标是调查使用移动的设备沿着蜂窝无线网络和其他传感技术来估计移动性,并建立强大的时空移动模型。运输系统将被视为目标应用程序。提取个人的移动模型可以分析交通状况,因此可以促进广泛的交通应用:车辆路线,优化交通信号灯,道路维护规划和拥堵管理。
软计算推理和过滤方法为建模移动性提供了一系列功能。 然而,由于移动性通常是一个非线性动态过程,因此较小的非线性可能会导致难以表示后验知识。为了调查这些挑战,将采用贝叶斯滤波和粒子滤波等顺序蒙特-卡罗方法。贝叶斯方法将被用来解决两个开放的问题:a)无线定位的基础上的信号分析(例如,指纹和RSS; B)同时定位和映射。综合传感方法进行了探索,以解决稀疏信号的问题,在这样的系统。各种各样的数据源,如蜂窝网络,手机,道路摄像机,车载GPS设备,环路探测器,和移动的增强现实模型,将作为补充的流动性线索进行研究。为了最大限度地发挥多模态的潜力,拟议的研究工作将调查几种数据融合技术,用于推断和估计移动性和交通趋势。在这里,拟议的研究项目将采用软计算作为推理方法,其中概率技术用于从移动性数据中捕获趋势,模糊和Dempster-Shafer技术为捕获的移动性和交通数据中的不确定性推理提供语言范例。粒子,卡尔曼,GMF,和HMM滤波器将采用在各个层次的拟议建模方案,以解决稀疏的测量压缩传感技术将进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Basir, Otman其他文献
Semantic understanding of general linguistic items by means of fuzzy set theory
- DOI:
10.1109/tfuzz.2006.889817 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:11.9
- 作者:
Khoury, Richard;Karray, Fakhri;Basir, Otman - 通讯作者:
Basir, Otman
Wideband L-Shaped Circular Polarized Monopole Slot Antenna
- DOI:
10.1109/lawp.2010.2066251 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:4.2
- 作者:
Mousavi, Pedram;Miners, Ben;Basir, Otman - 通讯作者:
Basir, Otman
Exchange strategies for multiple Ant Colony System
- DOI:
10.1016/j.ins.2006.09.016 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:8.1
- 作者:
Ellabib, Issmail;Calamai, Paul;Basir, Otman - 通讯作者:
Basir, Otman
Feature-Selected Tree-Based Classification
- DOI:
10.1109/tsmcb.2012.2237394 - 发表时间:
2013-12-01 - 期刊:
- 影响因子:11.8
- 作者:
Freeman, Cecille;Kulic, Dana;Basir, Otman - 通讯作者:
Basir, Otman
Farthest point distance: A new shape signature for Fourier descriptors
- DOI:
10.1016/j.image.2009.04.001 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:3.5
- 作者:
El-ghazal, Akrem;Basir, Otman;Belkasim, Saeid - 通讯作者:
Belkasim, Saeid
Basir, Otman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Basir, Otman', 18)}}的其他基金
Coordination and Cooperation in Self-Driving Vehicles
自动驾驶汽车的协调与合作
- 批准号:
RGPIN-2018-04342 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal Mobility Modeling and Traffic Profiling in Cyber-Physical Systems
网络物理系统中的多模式移动建模和流量分析
- 批准号:
184129-2012 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal Mobility Modeling and Traffic Profiling in Cyber-Physical Systems
网络物理系统中的多模式移动建模和流量分析
- 批准号:
184129-2012 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal Mobility Modeling and Traffic Profiling in Cyber-Physical Systems
网络物理系统中的多模式移动建模和流量分析
- 批准号:
184129-2012 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal Mobility Modeling and Traffic Profiling in Cyber-Physical Systems
网络物理系统中的多模式移动建模和流量分析
- 批准号:
184129-2012 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal sensor fusion architecture for audio-visual speech understanding
用于视听语音理解的多模态传感器融合架构
- 批准号:
184129-2007 - 财政年份:2011
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal sensor fusion architecture for audio-visual speech understanding
用于视听语音理解的多模态传感器融合架构
- 批准号:
184129-2007 - 财政年份:2010
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal sensor fusion architecture for audio-visual speech understanding
用于视听语音理解的多模态传感器融合架构
- 批准号:
184129-2007 - 财政年份:2009
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal sensor fusion architecture for audio-visual speech understanding
用于视听语音理解的多模态传感器融合架构
- 批准号:
184129-2007 - 财政年份:2008
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
A multi-modal sensor fusion architecture for audio-visual speech understanding
用于视听语音理解的多模态传感器融合架构
- 批准号:
184129-2007 - 财政年份:2007
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
ATD: Statistical Modeling of Spatial Temporal Human Mobility Flows from Aggregated Mobile Phone Data
ATD:根据聚合的移动电话数据对时空人类移动流进行统计建模
- 批准号:
2220231 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Modeling the Impact of Emerging Mobility Services Using Big Data Analytics
使用大数据分析对新兴移动服务的影响进行建模
- 批准号:
DGECR-2022-00470 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Modeling the Impact of Emerging Mobility Services Using Big Data Analytics
使用大数据分析对新兴移动服务的影响进行建模
- 批准号:
RGPIN-2022-03037 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems
职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式
- 批准号:
2234289 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
EAGER International Type II: Sustainable International Collaboration in Spatiotemporal Modeling of Human Mobility and Contagion Dynamics for COVID-19
EAGER International Type II:针对 COVID-19 的人类流动性和传染动力学时空建模的可持续国际合作
- 批准号:
2119334 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Connected Vehicle Based Traffic Dynamic Modeling and Proactive Freeway Control to Improve Mobility
基于联网车辆的交通动态建模和主动高速公路控制以提高移动性
- 批准号:
RGPIN-2016-06754 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
SCC-IRG Track 1: Revamping Regional Transportation Modeling and Planning to Address Unprecedented Community Needs during the Mobility Revolution
SCC-IRG 第 1 轨道:改进区域交通模型和规划,以满足移动革命期间前所未有的社区需求
- 批准号:
2125560 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Data-Driven Modeling to Improve Understanding of Human Behavior, Mobility, and Disease Spread
数据驱动建模以提高对人类行为、流动性和疾病传播的理解
- 批准号:
2109647 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Modeling and evaluation of location-based risk of epidemics using mobility data
使用移动数据对基于位置的流行病风险进行建模和评估
- 批准号:
563127-2021 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
University Undergraduate Student Research Awards