Efficient symbolic-numeric algorithms for structured constrained differential polynamial systems
结构化约束微分多项式系统的高效符号数值算法
基本信息
- 批准号:184166-2009
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symbolic Computation is the study of algorithms and software systems to manipulate mathematical expressions. Until recently the algorithms have processed exact expressions and equations only. Driven by the needs of applications, in which data is approximate, the subject has grown to include symbolic-numeric computation for polynomial equations. This is part of a broad effort to combine the generality of exact symbolic computation with the realism and efficiency of numeric computation.
Building on my previous results my proposal extends this subject further to efficient symbolic-numeric algorithms for approximate differential polynomial systems. Such systems express fundamental laws of science and applications have yielded ever more complicated systems involving, for example 100's of differential equations for the currents in complex circuits and the motions of components of medical robots. To analyze and solve such complicated models, computers are required at every stage: from formulation to solution.
Differentiation of such systems can reveal hidden constraints which are crucial in their geometric and solution properties. The proposal is to create and analyze new algorithms for such systems which enable: the stable and efficient symbolic-numeric algorithmic determination of their constraints; and the computer exploitation of the resulting geometry in the analysis and solution process. Algorithms will also be developed for exploiting the structure of systems typically arising in applications. This builds on powerful results in differential geometry and differential algebra, combined with the new area Numerical Algebraic Geometry, that gives a numerically stable approach for the first time to the simpler subclass of approximate polynomial equations. Existing symbolic techniques can detect global constraint structure but are limited to exact systems; while existing numeric techniques for more realistic approximate systems detect local, but not global structure. The research focuses on symbolic-numeric algorithms for structured systems, including global structure.
符号计算是一门研究算法和软件系统来处理数学表达式的学科。直到最近,这些算法还只能处理精确表达式和方程。在数据近似的应用需求的驱动下,该学科已经发展到包括多项式方程的符号-数值计算。这是将精确符号计算的通用性与数值计算的现实性和效率相结合的广泛努力的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reid, Greg其他文献
Cycling for Students With ASD: Self-Regulation Promotes Sustained Physical Activity
- DOI:
10.1123/apaq.27.3.226 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:1.9
- 作者:
Todd, Teri;Reid, Greg;Butler-Kisber, Lynn - 通讯作者:
Butler-Kisber, Lynn
The development and validation of the pictorial motivation scale in physical activity
- DOI:
10.1007/s11031-008-9117-x - 发表时间:
2009-06-01 - 期刊:
- 影响因子:4.8
- 作者:
Reid, Greg;Vallerand, Robert J.;Crocker, Peter - 通讯作者:
Crocker, Peter
Fundamental Movement Skills and Autism Spectrum Disorders
- DOI:
10.1007/s10803-009-0854-9 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:3.9
- 作者:
Staples, Kerri L.;Reid, Greg - 通讯作者:
Reid, Greg
Fundamental movement skills and children with attention-deficit hyperactivity disorder: Peer comparisons and stimulant effects
- DOI:
10.1007/s10802-007-9140-5 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:3.6
- 作者:
Harvey, William J.;Reid, Greg;Joober, Ridha - 通讯作者:
Joober, Ridha
Solving polynomial systems via symbolic-numeric reduction to geometric involutive form
通过符号数值简化为几何对合形式求解多项式系统
- DOI:
10.1016/j.jsc.2007.10.013 - 发表时间:
2009-03 - 期刊:
- 影响因子:0.7
- 作者:
Zhi, Lihong;Reid, Greg - 通讯作者:
Reid, Greg
Reid, Greg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reid, Greg', 18)}}的其他基金
Efficient symbolic-numeric algorithms for structured constrained differential polynamial systems
结构化约束微分多项式系统的高效符号数值算法
- 批准号:
184166-2009 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient symbolic-numeric algorithms for structured constrained differential polynamial systems
结构化约束微分多项式系统的高效符号数值算法
- 批准号:
184166-2009 - 财政年份:2011
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient symbolic-numeric algorithms for structured constrained differential polynamial systems
结构化约束微分多项式系统的高效符号数值算法
- 批准号:
184166-2009 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient symbolic-numeric algorithms for structured constrained differential polynamial systems
结构化约束微分多项式系统的高效符号数值算法
- 批准号:
184166-2009 - 财政年份:2009
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Symbolic-numeric algorithms and software for differential systems with constraints
带约束的微分系统的符号数值算法和软件
- 批准号:
184166-2004 - 财政年份:2008
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Symbolic-numeric algorithms and software for differential systems with constraints
带约束的微分系统的符号数值算法和软件
- 批准号:
184166-2004 - 财政年份:2007
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Symbolic-numeric algorithms and software for differential systems with constraints
带约束的微分系统的符号数值算法和软件
- 批准号:
184166-2004 - 财政年份:2006
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Symbolic-numeric algorithms and software for differential systems with constraints
带约束的微分系统的符号数值算法和软件
- 批准号:
184166-2004 - 财政年份:2005
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Symbolic-numeric algorithms and software for differential systems with constraints
带约束的微分系统的符号数值算法和软件
- 批准号:
184166-2004 - 财政年份:2004
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Hybrid Symbolic-Numeric Algorithms for Complex Nonlinear Systems
复杂非线性系统的混合符号数值算法
- 批准号:
RGPIN-2020-06438 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Symbolic-Numeric Algorithms for Complex Nonlinear Systems
复杂非线性系统的混合符号数值算法
- 批准号:
RGPIN-2020-06438 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Symbolic-numeric algorithms and applications for systems of differential polynomial equations and inequalities
微分多项式方程组和不等式组的符号数值算法和应用
- 批准号:
RGPIN-2016-06458 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
On the Study of Symbolic-Numeric Computation Using Randomized and/or Approximation Algorithms
关于使用随机和/或近似算法的符号数值计算的研究
- 批准号:
21K11760 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symbolic-numeric algorithms and applications for systems of differential polynomial equations and inequalities
微分多项式方程组和不等式组的符号数值算法和应用
- 批准号:
RGPIN-2016-06458 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Symbolic-Numeric Algorithms for Complex Nonlinear Systems
复杂非线性系统的混合符号数值算法
- 批准号:
RGPIN-2020-06438 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Robust Motion Planning Platform of Robots with Symbolic-Numeric Computation
符号数值计算机器人鲁棒运动规划平台的开发与应用
- 批准号:
20K11845 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symbolic-numeric algorithms and applications for systems of differential polynomial equations and inequalities
微分多项式方程组和不等式组的符号数值算法和应用
- 批准号:
RGPIN-2016-06458 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Symbolic linear algebra, symbolic-numeric computation and applications
符号线性代数、符号数值计算及应用
- 批准号:
RGPIN-2015-04168 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Symbolic linear algebra, symbolic-numeric computation and applications
符号线性代数、符号数值计算及应用
- 批准号:
RGPIN-2015-04168 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual