Theory of electoral college framework-based multi-classifier ensembling and its applications to subjective pattern recognition

基于选举团框架的多分类器集成理论及其在主观模式识别中的应用

基本信息

  • 批准号:
    261403-2011
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research will be applied to a class of pattern recognition applications, which we call subjective pattern recognition, with face identification and content-based information retrieval as typical examples. We know very little about how our brains process this type of information; indeed, the standards for judging the similarity/dissimilarity are subjective -- manpower is usually required to verify any conclusions made by machine. Although new algorithms are developed every year, much of the research follows a general "trial-and-error" procedure: Given a data set, for a known algorithm, we try various parameters; if we are not satisfied with the accuracy, we try a new algorithm; and then for the new algorithm, we try various parameters; and so on. The proposed research will lead to a new type of algorithm for subjective pattern recognition, which has predictable high stability and therefore is guaranteed to perform (i.e. accuracy) at a high level. The research proposed is closely related to the Electoral College (EC). The EC voting format has been used for many years in political elections: a nation is partitioned into regions; the winner of each region is determined by a majority of its voting population; the final winner is selected according to the weighted sum of each candidate's winning regions based on the winner-take-all principle. It has also been used in many areas of scientific research. This research attempts to develop a model, our so-called EC framework-based multi- classifier ensembling, to improve the regular EC format in that general decision making approaches rather than simple vote counting will be used in each region for local decision making, and advanced ensembling technology rather than simple winner-take-all rule will be used for combining local decisions into final ones. On the theoretical front, our model will be the first that integrates classifier ensembling techniques with the EC framework; it will also be the first that illustrates the stabilities and applicabilities of the EC framework- based multi-classifier ensembles. The proposed research will establish guidelines for adopting our model in pattern recognition applications, particularly in subjective pattern recognition.
本文的研究将应用于一类模式识别的应用,我们称之为主观模式识别,人脸识别和基于内容的信息检索作为典型的例子。我们对大脑如何处理这类信息知之甚少;事实上,判断相似性/不相似性的标准是主观的-通常需要人工来验证机器得出的任何结论。虽然每年都有新的算法被开发出来,但大多数研究都遵循一个通用的“试错”过程:给定一个数据集,对于一个已知的算法,我们尝试各种参数;如果我们对准确性不满意,我们尝试一个新的算法;然后对于新算法,我们尝试各种参数;所提出的研究将导致用于主观模式识别的新型算法,其具有可预测的高稳定性,因此保证在高水平上执行(即,准确性)。 这项研究与选举团(EC)密切相关。选举委员会的投票形式已经在政治选举中使用了很多年:一个国家被划分为几个地区;每个地区的获胜者由其投票人口的大多数决定;最终获胜者是根据每个候选人获胜地区的加权和根据赢家通吃原则选出的。它也被用于许多科学研究领域。本研究试图开发一个模型,我们所谓的EC框架为基础的多分类器集成,以改善常规EC格式,一般的决策方法,而不是简单的投票计数将用于在每个区域的本地决策,先进的集成技术,而不是简单的赢家通吃规则将用于组合的本地决策到最终的。 在理论方面,我们的模型将是第一个集成分类器集成技术与EC框架,它也将是第一个说明的EC框架为基础的多分类器集成的稳定性和适用性。建议的研究将建立采用我们的模型在模式识别应用程序,特别是在主观模式识别的指导方针。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Liang其他文献

Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration
用于结构组织再生的分层微/纳米纤维生物支架
  • DOI:
    10.1002/adhm.201601457
  • 发表时间:
    2017-07-05
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Xu, Yun;Cui, Wenguo;Chen, Liang
  • 通讯作者:
    Chen, Liang
Cloning and expression patterns of VQ-motif-containing proteins under abiotic stress in tea plant
  • DOI:
    10.1007/s10725-018-0469-2
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Chen, Wei;Xu, Yan-Xia;Chen, Liang
  • 通讯作者:
    Chen, Liang
Synthesis, structure, and catalytic activity of chiral silver(I) and copper(II) complexes with biaryl-based nitrogen-containing ligands
联芳基含氮配体手性银(I)和铜(II)配合物的合成、结构和催化活性
  • DOI:
    10.1016/j.ica.2010.11.023
  • 发表时间:
    2011-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhang, Haiyan;Chen, Liang;Song, Haibin;Zi, Guofu
  • 通讯作者:
    Zi, Guofu
Development and validation of cuproptosis-related genes in synovitis during osteoarthritis progress.
  • DOI:
    10.3389/fimmu.2023.1090596
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Chang, Bohan;Hu, Zhehan;Chen, Liang;Jin, Zhuangzhuang;Yang, Yue
  • 通讯作者:
    Yang, Yue
Electrochemical biosensor for amplified detection of Pb2+ based on perfect match of reduced graphene oxide-gold nanoparticles and single-stranded DNAzyme
  • DOI:
    10.1007/s00216-019-02146-w
  • 发表时间:
    2019-10-21
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Lai, Cui;Zhang, Yujin;Chen, Liang
  • 通讯作者:
    Chen, Liang

Chen, Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Liang', 18)}}的其他基金

Fiber Optics for Fundamental Science and Applications
光纤基础科学与应用
  • 批准号:
    RGPIN-2020-05774
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Fiber Optics for Fundamental Science and Applications
光纤基础科学与应用
  • 批准号:
    RGPIN-2020-05774
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Fiber Optics for Fundamental Science and Applications
光纤基础科学与应用
  • 批准号:
    RGPIN-2020-05774
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative Study and Applications of Multi-Level Electoral College
多级选举团制度的定量研究及应用
  • 批准号:
    DDG-2018-00021
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Advanced Light Scattering in Fiber: Theory and Applications
光纤中的高级光散射:理论与应用
  • 批准号:
    227453-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative Study and Applications of Multi-Level Electoral College
多级选举团制度的定量研究及应用
  • 批准号:
    DDG-2018-00021
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Study on Electoral College based Deep Learning and Its Applications
基于选举学院的深度学习及其应用研究
  • 批准号:
    RGPIN-2016-06631
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Light Scattering in Fiber: Theory and Applications
光纤中的高级光散射:理论与应用
  • 批准号:
    227453-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Protein interactions in Drosophila oogenesis
果蝇卵子发生中的蛋白质相互作用
  • 批准号:
    482997-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    University Undergraduate Student Research Awards
Theory of electoral college framework-based multi-classifier ensembling and its applications to subjective pattern recognition
基于选举团框架的多分类器集成理论及其在主观模式识别中的应用
  • 批准号:
    261403-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Quantitative Study and Applications of Multi-Level Electoral College
多级选举团制度的定量研究及应用
  • 批准号:
    DDG-2018-00021
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Quantitative Study and Applications of Multi-Level Electoral College
多级选举团制度的定量研究及应用
  • 批准号:
    DDG-2018-00021
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Study on Electoral College based Deep Learning and Its Applications
基于选举学院的深度学习及其应用研究
  • 批准号:
    RGPIN-2016-06631
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of electoral college framework-based multi-classifier ensembling and its applications to subjective pattern recognition
基于选举团框架的多分类器集成理论及其在主观模式识别中的应用
  • 批准号:
    261403-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of electoral college framework-based multi-classifier ensembling and its applications to subjective pattern recognition
基于选举团框架的多分类器集成理论及其在主观模式识别中的应用
  • 批准号:
    261403-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of electoral college framework-based multi-classifier ensembling and its applications to subjective pattern recognition
基于选举团框架的多分类器集成理论及其在主观模式识别中的应用
  • 批准号:
    261403-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of electoral college framework-based multi-classifier ensembling and its applications to subjective pattern recognition
基于选举团框架的多分类器集成理论及其在主观模式识别中的应用
  • 批准号:
    261403-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of multi-level electoral college for multi-candidte elections and electoral college based face recognition surveillance and intelligent textual information retrival system
多候选人选举的多级选举团理论及基于选举团的人脸识别监控和智能文本信息检索系统
  • 批准号:
    261403-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of multi-level electoral college for multi-candidte elections and electoral college based face recognition surveillance and intelligent textual information retrival system
多候选人选举的多级选举团理论及基于选举团的人脸识别监控和智能文本信息检索系统
  • 批准号:
    261403-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of multi-level electoral college for multi-candidte elections and electoral college based face recognition surveillance and intelligent textual information retrival system
多候选人选举的多级选举团理论及基于选举团的人脸识别监控和智能文本信息检索系统
  • 批准号:
    261403-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了