"Search, Opponent Modelling, Cooperation, and State Inference in Complex Imperfect Information Domains."
“复杂不完美信息域中的搜索、对手建模、合作和状态推理。”
基本信息
- 批准号:261531-2012
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) research applied to games has a long tradition that reaches back at
least 75 years with Alan Turing's work on computer chess. The advantage of studying AI algorithms
in this area is that games are precisely defined, relatively small when compared to real-world
decision domains, and yet sufficiently complex to pose tough research problems whose solutions can
help us create machines of human-level intelligence. AI research has had its successes in games
like chess, backgammon, and checkers - where machines now play on par with or better than the best
human players. However, in more complex domains machines are still trailing behind human
experts. The main differences to the games in which AI research has been very successful are that
game state information is hidden from players or the number of move choices is very large. Both
properties render complete enumeration, which is a cornerstone of many high-performance AI systems,
less effective.
The objective of the research proposed here is to create systems that will reach or surpass the
performance of human experts in real-time decision domains that feature uncertainty, imperfect
information, or complex state and action spaces. The benchmark applications we will be working on
are trick-based card games and real-time strategy video games. Improving the state of the art
requires us to develop new algorithms that can model opponents, infer hidden game states, cooperate
with partners, and look-ahead in abstracted search spaces. In the long term, the results of this
project will increase our understanding of fundamental AI problems that need to be solved in the
process of creating human-level AI systems. In the short term, we anticipate the computer games
industry benefiting from our research, because it is in need of credible computer controlled agents
in the domains we study.
应用于游戏的人工智能(AI)研究有着悠久的传统,
艾伦·图灵在计算机国际象棋上的研究已经有75年了学习AI算法的优势
在这方面,游戏是精确定义的,与现实世界相比相对较小,
决策领域,但足够复杂,提出坚韧研究问题,其解决方案,
帮助我们创造出具有人类智能的机器。人工智能研究在游戏中取得了成功
比如国际象棋、西洋双陆棋和跳棋--现在机器在这些方面的表现与最好的不相上下,甚至更好
人类玩家然而,在更复杂的领域,机器仍然落后于人类。
专家与人工智能研究非常成功的游戏的主要区别在于,
游戏状态信息对玩家隐藏或者移动选择的数量非常大。两
属性呈现完全枚举,这是许多高性能AI系统的基石,
效率较低。
这里提出的研究目标是创建将达到或超过
人类专家在具有不确定性、不完美性和不确定性的实时决策领域中的表现
信息或复杂的状态和动作空间。我们将开发的基准应用程序
是基于技巧的纸牌游戏和即时战略视频游戏。改进现有技术
要求我们开发新的算法,可以模拟对手,推断隐藏的游戏状态,
与合作伙伴一起,并在抽象的搜索空间中进行前瞻。从长远来看,这样做的结果
该项目将增加我们对人工智能领域需要解决的基本问题的理解。
创建人类级别的AI系统的过程。从短期来看,我们预计电脑游戏
行业受益于我们的研究,因为它需要可靠的计算机控制代理
在我们研究的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Buro, Michael其他文献
Real-Time Strategy Game Competitions
- DOI:
10.1609/aimag.v33i3.2419 - 发表时间:
2012-09-01 - 期刊:
- 影响因子:0.9
- 作者:
Buro, Michael;Churchill, David - 通讯作者:
Churchill, David
Buro, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Buro, Michael', 18)}}的其他基金
Learning and Search in Decision Domains Featuring Large Action Sets and Uncertainty
具有大型动作集和不确定性的决策域中的学习和搜索
- 批准号:
RGPIN-2018-06677 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Learning and Search in Decision Domains Featuring Large Action Sets and Uncertainty
具有大型动作集和不确定性的决策域中的学习和搜索
- 批准号:
RGPIN-2018-06677 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Learning and Search in Decision Domains Featuring Large Action Sets and Uncertainty
具有大型动作集和不确定性的决策域中的学习和搜索
- 批准号:
RGPIN-2018-06677 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Learning and Search in Decision Domains Featuring Large Action Sets and Uncertainty
具有大型动作集和不确定性的决策域中的学习和搜索
- 批准号:
RGPIN-2018-06677 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Learning and Search in Decision Domains Featuring Large Action Sets and Uncertainty
具有大型动作集和不确定性的决策域中的学习和搜索
- 批准号:
RGPIN-2018-06677 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Learning and Search in Decision Domains Featuring Large Action Sets and Uncertainty
具有大型动作集和不确定性的决策域中的学习和搜索
- 批准号:
RGPIN-2017-05271 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Search, Opponent Modelling, Cooperation, and State Inference in Complex Imperfect Information Domains."
“复杂不完美信息域中的搜索、对手建模、合作和状态推理。”
- 批准号:
261531-2012 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Search, Opponent Modelling, Cooperation, and State Inference in Complex Imperfect Information Domains."
“复杂不完美信息域中的搜索、对手建模、合作和状态推理。”
- 批准号:
261531-2012 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Search, Opponent Modelling, Cooperation, and State Inference in Complex Imperfect Information Domains."
“复杂不完美信息域中的搜索、对手建模、合作和状态推理。”
- 批准号:
261531-2012 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Search, Opponent Modelling, Cooperation, and State Inference in Complex Imperfect Information Domains."
“复杂不完美信息域中的搜索、对手建模、合作和状态推理。”
- 批准号:
261531-2012 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Opponent control of action selection in the cortico-basal-ganglia-colliculus loop
皮质-基底节-丘环中动作选择的对手控制
- 批准号:
10633574 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Contribution of ipRGC to the color perception measured by the opponent color responses
ipRGC 对通过对手颜色响应测量的颜色感知的贡献
- 批准号:
23K11281 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The endogenous cannabinoid system is involved in pain-reward opponent mechanisms
内源性大麻素系统参与疼痛奖励对手机制
- 批准号:
RGPIN-2016-05719 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The endogenous cannabinoid system is involved in pain-reward opponent mechanisms
内源性大麻素系统参与疼痛奖励对手机制
- 批准号:
RGPIN-2016-05719 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The endogenous cannabinoid system is involved in pain-reward opponent mechanisms
内源性大麻素系统参与疼痛奖励对手机制
- 批准号:
RGPIN-2016-05719 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Estimation of Invisible Information Using Motion of Gaze of Opponent in Incomplete Information Game
不完全信息博弈中利用对手注视运动估计隐形信息
- 批准号:
18K18172 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Color vision mechanisms based on color opponent cells
基于颜色对手细胞的色觉机制
- 批准号:
18K06342 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The neural basis of color vision: (I) photoreceptor interactions and origin of color opponent processing.
色觉的神经基础:(I)感光器相互作用和颜色对手处理的起源。
- 批准号:
408330929 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Research Grants
Opponent Modelling in Strategic Interaction
战略互动中的对手建模
- 批准号:
2096405 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Studentship
The Role of Opponent Basal Ganglia Outputs in Behavior
对手基底神经节输出在行为中的作用
- 批准号:
10063566 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:














{{item.name}}会员




