Iterative Solvers for Saddle-Point Systems
鞍点系统的迭代求解器
基本信息
- 批准号:261539-2012
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal concerns the investigation, analysis and implementation of numerical solution methods for a family of linear systems that arise from problems that can be generally posed as minimization problems with constraints. Such problems are extremely important, and they frequently appear in a surprisingly large scope of scientific models. Examples of relevant applications include computer graphics, data mining, image processing, medical imaging, fluid flow, electromagnetics, and many more instances.
The proposal puts forward a list of objectives that include the design of new solvers for constrained optimization problems and constrained differential equations, the derivation of new algorithms that combine various solution methodologies into one optimized solver, and the investigation of questions pertaining to the best way to solve the problem, with focus on the question to what extent various reformulations affect the robustness and reliability of solution procedures. Long-term objectives include the pursuit of a unified framework that sheds light on connections among different solution methodologies and among the different applications that lead to the systems that are considered.
The issues addressed in this proposal are not just of theoretical interest but also of a high practical value, including the implementation of various solvers and the involvement of highly qualified personnel.
The timeliness of this proposal is driven by the continual development of new disciplines and problems that involve the solution of large-scale linear algebra systems, and the new frontiers that processing speed, parallel computing architectures and high performance computing have reached, pushing the envelope in terms of the size of problems that can be tackled.
这一建议涉及的调查,分析和实现的数值解决方法的一族线性系统产生的问题,通常可以提出的最小化问题与约束。这些问题是极其重要的,它们经常出现在令人惊讶的大范围科学模型中。相关应用的例子包括计算机图形学、数据挖掘、图像处理、医学成像、流体流动、电磁学以及更多的实例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greif, Chen其他文献
Preconditioners for the discretized time-harmonic Maxwell equations in mixed form
- DOI:
10.1002/nla.515 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:4.3
- 作者:
Greif, Chen;Schoetzau, Dominik - 通讯作者:
Schoetzau, Dominik
A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics
- DOI:
10.1016/j.cma.2010.05.007 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:7.2
- 作者:
Greif, Chen;Li, Dan;Wei, Xiaoxi - 通讯作者:
Wei, Xiaoxi
Greif, Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greif, Chen', 18)}}的其他基金
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
- 批准号:
RGPIN-2017-04491 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
- 批准号:
RGPIN-2017-04491 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
- 批准号:
RGPIN-2017-04491 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
- 批准号:
RGPIN-2017-04491 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
- 批准号:
RGPIN-2017-04491 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Iterative Solvers for Saddle-Point Systems
鞍点系统的迭代求解器
- 批准号:
261539-2012 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Iterative Solvers for Saddle-Point Systems
鞍点系统的迭代求解器
- 批准号:
261539-2012 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Iterative Solvers for Saddle-Point Systems
鞍点系统的迭代求解器
- 批准号:
261539-2012 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Iterative Solvers for Saddle-Point Systems
鞍点系统的迭代求解器
- 批准号:
261539-2012 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Preconditioners for saddle point linear systems
鞍点线性系统的预处理器
- 批准号:
261539-2007 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Next-Generation Solvers for Complex Microwave Engineering Problems
复杂微波工程问题的下一代求解器
- 批准号:
DP240102682 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Projects
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
CAREER: Inviting all 21st century problem-solvers: Building equity by de-tracking middle school mathematics instruction
职业:邀请所有 21 世纪的问题解决者:通过打破中学数学教学的轨道来建立公平
- 批准号:
2336391 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Application of perfect sampling with SAT/SMT solvers
SAT/SMT 求解器完美采样的应用
- 批准号:
23K10998 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Speeding-up SAT-based Constraint Optimization Solvers
加速基于 SAT 的约束优化求解器
- 批准号:
23K11047 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Delta-Complete SMT Solvers for Learning and Optimization Algorithms
用于学习和优化算法的 Delta-Complete SMT 求解器
- 批准号:
2869702 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Development of Efficient Solvers for Ill-conditioned Nonlinear Equations Using Mixed- and Multiple-precision Floating-point Arithmetic
使用混合和多精度浮点运算开发病态非线性方程的高效求解器
- 批准号:
23K11127 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)