Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
基本信息
- 批准号:288332-2012
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nowadays research efforts in various disciplines have generated complex data sets different from the traditional types. The new kinds of data sets may have high-dimensionality, a large number of
parameters, complicated dependency relationship, or measurements from different experimental platforms. There is an increasing demand for the development of statistical methodologies and inference procedures to analyze these complex data sets. We plan to conduct theoretical investigations on how to develop statistical methods especially designed for high dimensional correlated data. The proposed new methods can be used to address the problems arising from the fields of statistical genetics and bioinformatics.
To properly analyze high dimensional data in the presence of complex dependency structure will be the main motivation and also the major challenge for our project. To reduce the dimensionality of the problem, there are a number of strategies, including selecting a simpler sub-model, or enforcing a sparse model through penalization. In this research project, we will focus on the investigation of penalized estimation and model selection methods for dependent data. The theories will provide more insight into the inference we can draw from data. Especially, the method will enable us to discern which pieces of information are important among huge amount of data. On the applied side of our project, we will be investigating different methods to perform data integration. Such procedures are in great need because current technologies produce various kinds of data in different platforms. We will also aim to set up a general framework based on pseudo likelihood to perform genetic analysis for correlated populations. We expect to develop this unified approach which is general for a wide range of genetic problems.
如今,各个学科的研究工作产生了不同于传统类型的复杂数据集。新类型的数据集可能具有高维数、数量多的特点
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gao, Xin其他文献
Joint modeling compliance and outcome for causal analysis in longitudinal studies.
- DOI:
10.1002/sim.5811 - 发表时间:
2014-09-10 - 期刊:
- 影响因子:2
- 作者:
Gao, Xin;Brown, Gregory K.;Elliott, Michael R. - 通讯作者:
Elliott, Michael R.
Safety of chronic high-dose calcium channel blockers exposure in children with pulmonary arterial hypertension.
- DOI:
10.3389/fcvm.2022.918735 - 发表时间:
2022 - 期刊:
- 影响因子:3.6
- 作者:
Wu, Yan;Peng, Fu-Hua;Gao, Xin;Yan, Xin-Xin;Zhang, FengWen;Tan, Jiang-Shan;Hu, Song;Hua, Lu - 通讯作者:
Hua, Lu
Laparoscopic Radical Prostatectomy after Previous Transurethral Resection of the Prostate in Clinical T1a and T1b Prostate Cancer: A Matched-Pair Analysis.
临床 T1a 和 T1b 前列腺癌既往经尿道前列腺切除术后的腹腔镜根治性前列腺切除术:配对分析。
- DOI:
10.22037/uj.v12i3.3083 - 发表时间:
2015-07 - 期刊:
- 影响因子:0
- 作者:
Huang, Qun-Xiong;Lu, Min-Hua;Si-tu, Jie;Gao, Xin - 通讯作者:
Gao, Xin
Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.
- DOI:
10.1016/j.jbiomech.2016.05.028 - 发表时间:
2016-09-06 - 期刊:
- 影响因子:2.4
- 作者:
Gao, Xin;Zhu, Qiaoqiao;Gu, Weiyong - 通讯作者:
Gu, Weiyong
Total synthesis of 6-deoxyerythronolide B via C-C bond-forming transfer hydrogenation.
通过C-C键形成转移氢化,总合成6-脱氧的噻烷B。
- DOI:
10.1021/ja4008722 - 发表时间:
2013-03-20 - 期刊:
- 影响因子:15
- 作者:
Gao, Xin;Woo, Sang Kook;Krische, Michael J. - 通讯作者:
Krische, Michael J.
Gao, Xin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gao, Xin', 18)}}的其他基金
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
522718-2018 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
522718-2018 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual