Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
基本信息
- 批准号:288332-2012
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nowadays research efforts in various disciplines have generated complex data sets different from the traditional types. The new kinds of data sets may have high-dimensionality, a large number ofparameters, complicated dependency relationship, or measurements from different experimental platforms. There is an increasing demand for the development of statistical methodologies and inference procedures to analyze these complex data sets. We plan to conduct theoretical investigations on how to develop statistical methods especially designed for high dimensional correlated data. The proposed new methods can be used to address the problems arising from the fields of statistical genetics and bioinformatics.To properly analyze high dimensional data in the presence of complex dependency structure will be the main motivation and also the major challenge for our project. To reduce the dimensionality of the problem, there are a number of strategies, including selecting a simpler sub-model, or enforcing a sparse model through penalization. In this research project, we will focus on the investigation of penalized estimation and model selection methods for dependent data. The theories will provide more insight into the inference we can draw from data. Especially, the method will enable us to discern which pieces of information are important among huge amount of data. On the applied side of our project, we will be investigating different methods to perform data integration. Such procedures are in great need because current technologies produce various kinds of data in different platforms. We will also aim to set up a general framework based on pseudo likelihood to perform genetic analysis for correlated populations. We expect to develop this unified approach which is general for a wide range of genetic problems.
如今,各个学科的研究工作已经产生了不同于传统类型的复杂数据集。新型数据集可能具有高维度、大量参数、复杂的依赖关系或来自不同实验平台的测量结果。人们越来越需要开发统计方法和推理程序来分析这些复杂的数据集。我们计划对如何开发专门为高维相关数据设计的统计方法进行理论研究。所提出的新方法可用于解决统计遗传学和生物信息学领域出现的问题。在存在复杂依赖结构的情况下正确分析高维数据将是我们项目的主要动机也是主要挑战。为了降低问题的维度,有多种策略,包括选择更简单的子模型,或通过惩罚强制执行稀疏模型。在本研究项目中,我们将重点研究相关数据的惩罚估计和模型选择方法。这些理论将为我们从数据中得出的推论提供更多的见解。特别是,该方法将使我们能够在大量数据中辨别哪些信息是重要的。在我们项目的应用方面,我们将研究执行数据集成的不同方法。由于当前技术在不同平台上产生各种类型的数据,因此非常需要这样的程序。我们还将致力于建立一个基于伪可能性的通用框架,对相关群体进行遗传分析。我们期望开发出这种适用于广泛遗传问题的统一方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gao, Xin其他文献
An updated meta-analysis of cardiac resynchronization therapy with or without defibrillation in patients with nonischemic cardiomyopathy.
- DOI:
10.3389/fcvm.2023.1078570 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Liu, Fuwei;Gao, Xin;Luo, Jun - 通讯作者:
Luo, Jun
Hybrid two-dimensional nickel oxide-reduced graphene oxide nanosheets for supercapacitor electrodes
- DOI:
10.1016/j.microc.2021.105979 - 发表时间:
2021-02-03 - 期刊:
- 影响因子:4.8
- 作者:
Gao, Xin;Zhang, Hengwei;Yue, Hongyan - 通讯作者:
Yue, Hongyan
PPML-Omics: A privacy-preserving federated machine learning method protects patients' privacy in omic data.
- DOI:
10.1126/sciadv.adh8601 - 发表时间:
2024-02-02 - 期刊:
- 影响因子:13.6
- 作者:
Zhou, Juexiao;Chen, Siyuan;Wu, Yulian;Li, Haoyang;Zhang, Bin;Zhou, Longxi;Hu, Yan;Xiang, Zihang;Li, Zhongxiao;Chen, Ningning;Han, Wenkai;Xu, Chencheng;Wang, Di;Gao, Xin - 通讯作者:
Gao, Xin
Emerging investigator series: local pH effects on carbon oxidation in capacitive deionization architectures†
- DOI:
10.1039/d1ew00005e - 发表时间:
2021-03-19 - 期刊:
- 影响因子:5
- 作者:
Landon, James;Gao, Xin;Liu, Kunlei - 通讯作者:
Liu, Kunlei
Safety of chronic high-dose calcium channel blockers exposure in children with pulmonary arterial hypertension.
- DOI:
10.3389/fcvm.2022.918735 - 发表时间:
2022 - 期刊:
- 影响因子:3.6
- 作者:
Wu, Yan;Peng, Fu-Hua;Gao, Xin;Yan, Xin-Xin;Zhang, FengWen;Tan, Jiang-Shan;Hu, Song;Hua, Lu - 通讯作者:
Hua, Lu
Gao, Xin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gao, Xin', 18)}}的其他基金
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
522718-2018 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
522718-2018 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing statistical and topological learning methodologies for high-dimensional complex data
开发高维复杂数据的统计和拓扑学习方法
- 批准号:
RGPIN-2016-05167 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodologies for High Dimensional Correlated Data
高维相关数据的统计方法
- 批准号:
288332-2012 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual