Stochastic Methods in Finance

金融中的随机方法

基本信息

  • 批准号:
    293274-2013
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The objectives of the proposed research are to develop the mathematical models and theory for financial applications and to apply the results to financial markets. Most finance theory has the implicit assumption that traders can buy or sell as many shares of securities as they wish by immediate transactions. But in actual markets, this assumption is not satisfied, and thus the subject "liquidity risk" has received wide attention. Liquidity risk is the additional risk in the market due to the timing and size of a trade. The price process may depend on the activities of traders, especially the trading volume. The optimal trading strategy for the investor and the optimal liquidation problems need to be investigated from the aspects of practice as well as mathematics. Many of the theoretical developments allow financial institutions (such as banks) to design specialized derivatives, find a "fair" price, and sell them to their clients. Barrier options are a widely used class of path-dependent financial derivatives. Chained option is viewed as barrier options which are chained together in a sense that another barrier option becomes active after underlying asset price crosses a primary barrier. These chained-type barrier options have become popular in the over-the-counter equity and foreign exchange derivatives market, and pricing and hedging problems are certainly important research questions. The research on chained option is originated by myself (co-authored with D. Jun), and it is a highly significant discovery. Our theoretical advances would help market participants enlarge the range of their choice and understand the economic benefits of such products. Efficient risk management is essential to the success of financial institutions such as investment banks and insurance companies. Mathematical research in this area is extremely important and should be encouraged.
拟议研究的目标是为金融应用开发数学模型和理论,并将结果应用于金融市场。大多数金融理论都有一个隐含的假设,即交易员可以通过即期交易买入或卖出他们想要的任意数量的证券。但在实际市场中,这一假设并未得到满足,因此流动性风险这一主题受到了广泛的关注。流动性风险是由于交易的时机和规模而导致的市场上的额外风险。价格过程可能取决于交易员的活动,尤其是交易量。投资者的最优交易策略和最优清算问题需要从实践和数学两个方面进行研究。 许多理论发展允许金融机构(如银行)设计专门的衍生品,找到一个“公平”的价格,并将其出售给客户。障碍期权是一类广泛使用的路径依赖型金融衍生品。链式期权被视为链式期权,在某种意义上说,当标的资产价格越过主要障碍后,另一种障碍期权变得有效。这些链式障碍期权在场外股票和外汇衍生品市场上很受欢迎,定价和对冲问题当然是重要的研究问题。链式期权的研究是我与D.Jun合著的,是一项非常有意义的发现。我们的理论进步将帮助市场参与者扩大他们的选择范围,并了解此类产品的经济效益。 有效的风险管理对投资银行和保险公司等金融机构的成功至关重要。这一领域的数学研究极其重要,应予以鼓励。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ku, Hyejin其他文献

Option pricing for a large trader with price impact and liquidity costs
IS CHINA'S POLLUTION THE CULPRIT FOR THE CHOKING OF SOUTH KOREA? EVIDENCE FROM THE ASIAN DUST
  • DOI:
    10.1093/ej/uez021
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Jia, Ruixue;Ku, Hyejin
  • 通讯作者:
    Ku, Hyejin
Utilizing historical data for corporate credit rating assessment
  • DOI:
    10.1016/j.eswa.2020.113925
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Wang, Mingfu;Ku, Hyejin
  • 通讯作者:
    Ku, Hyejin
Coherent multiperiod risk adjusted values and Bellman's principle
  • DOI:
    10.1007/s10479-006-0132-6
  • 发表时间:
    2007-01-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Artzner, Philippe;Delbaen, Freddy;Ku, Hyejin
  • 通讯作者:
    Ku, Hyejin
Use of a Distance Measure for the Comparison of Unit Hydrographs: Application to the Stream Gauge Network Optimization
  • DOI:
    10.1061/(asce)he.1943-5584.0000393
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yoo, Chulsang;Ku, Hyejin;Kim, Keewook
  • 通讯作者:
    Kim, Keewook

Ku, Hyejin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ku, Hyejin', 18)}}的其他基金

Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
  • 批准号:
    RGPIN-2018-05880
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
  • 批准号:
    RGPIN-2018-05880
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
  • 批准号:
    RGPIN-2018-05880
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
  • 批准号:
    RGPIN-2018-05880
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
  • 批准号:
    RGPIN-2018-05880
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
  • 批准号:
    293274-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
  • 批准号:
    293274-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
  • 批准号:
    293274-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Measures of financial risk and derivative pricing
金融风险和衍生品定价的衡量标准
  • 批准号:
    293274-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Measures of financial risk and derivative pricing
金融风险和衍生品定价的衡量标准
  • 批准号:
    293274-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Advanced stochastic methods in mathematical finance and related fields
数学金融及相关领域的高级随机方法
  • 批准号:
    RGPIN-2014-05901
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced stochastic methods in mathematical finance and related fields
数学金融及相关领域的高级随机方法
  • 批准号:
    RGPIN-2014-05901
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric methods for dimensionality reductions of stochastic (partial) differential equations with applications to signal processing and finance
随机(偏)微分方程降维的几何方法及其在信号处理和金融中的应用
  • 批准号:
    1943803
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
Stochastic Methods in Finance
金融中的随机方法
  • 批准号:
    293274-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced stochastic methods in mathematical finance and related fields
数学金融及相关领域的高级随机方法
  • 批准号:
    RGPIN-2014-05901
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced stochastic methods in mathematical finance and related fields
数学金融及相关领域的高级随机方法
  • 批准号:
    RGPIN-2014-05901
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced stochastic methods in mathematical finance and related fields
数学金融及相关领域的高级随机方法
  • 批准号:
    RGPIN-2014-05901
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
  • 批准号:
    293274-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
  • 批准号:
    293274-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Development of the methods of stochastic control and filtering in mathematical finance
数学金融中随机控制和过滤方法的发展
  • 批准号:
    20340019
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了