Stochastic Methods in Finance
金融中的随机方法
基本信息
- 批准号:293274-2013
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objectives of the proposed research are to develop the mathematical models and theory for financial applications and to apply the results to financial markets. Most finance theory has the implicit assumption that traders can buy or sell as many shares of securities as they wish by immediate transactions. But in actual markets, this assumption is not satisfied, and thus the subject "liquidity risk" has received wide attention. Liquidity risk is the additional risk in the market due to the timing and size of a trade. The price process may depend on the activities of traders, especially the trading volume. The optimal trading strategy for the investor and the optimal liquidation problems need to be investigated from the aspects of practice as well as mathematics. Many of the theoretical developments allow financial institutions (such as banks) to design specialized derivatives, find a "fair" price, and sell them to their clients. Barrier options are a widely used class of path-dependent financial derivatives. Chained option is viewed as barrier options which are chained together in a sense that another barrier option becomes active after underlying asset price crosses a primary barrier. These chained-type barrier options have become popular in the over-the-counter equity and foreign exchange derivatives market, and pricing and hedging problems are certainly important research questions. The research on chained option is originated by myself (co-authored with D. Jun), and it is a highly significant discovery. Our theoretical advances would help market participants enlarge the range of their choice and understand the economic benefits of such products. Efficient risk management is essential to the success of financial institutions such as investment banks and insurance companies. Mathematical research in this area is extremely important and should be encouraged.
拟议研究的目标是为财务应用开发数学模型和理论,并将结果应用于金融市场。大多数财务理论都有隐含的假设,即交易者可以按照立即交易的方式买卖或出售尽可能多的证券股。但是在实际市场中,这种假设不满足,因此“流动性风险”受到广泛关注。由于交易的时间和规模,流动性风险是市场上的额外风险。价格过程可能取决于交易者的活动,尤其是交易量。投资者的最佳交易策略和最佳清算问题需要从实践和数学方面进行研究。许多理论发展允许金融机构(例如银行)设计专门的衍生产品,找到“公平”的价格并将其出售给客户。障碍选项是一类广泛使用路径依赖的金融衍生品。链式选项被视为屏障选项,从某种意义上说,在基本资产价格越过主要障碍后,另一个障碍选项会变得活跃。这些链式式障碍选择在非处方股票和外汇衍生品市场中变得很流行,定价和对冲问题当然是重要的研究问题。对链式选项的研究起源于我自己(与D. Jun合着),这是一个非常重要的发现。我们的理论进步将有助于市场参与者扩大他们选择的范围,并了解此类产品的经济利益。有效的风险管理对于投资银行和保险公司等金融机构的成功至关重要。该领域的数学研究非常重要,应该鼓励。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ku, Hyejin其他文献
Option pricing for a large trader with price impact and liquidity costs
- DOI:
10.1016/j.jmaa.2017.10.072 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:1.3
- 作者:
Ku, Hyejin;Zhang, Hai - 通讯作者:
Zhang, Hai
IS CHINA'S POLLUTION THE CULPRIT FOR THE CHOKING OF SOUTH KOREA? EVIDENCE FROM THE ASIAN DUST
- DOI:
10.1093/ej/uez021 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:3.2
- 作者:
Jia, Ruixue;Ku, Hyejin - 通讯作者:
Ku, Hyejin
Utilizing historical data for corporate credit rating assessment
- DOI:
10.1016/j.eswa.2020.113925 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:8.5
- 作者:
Wang, Mingfu;Ku, Hyejin - 通讯作者:
Ku, Hyejin
Do place-based tax incentives create jobs?
- DOI:
10.1016/j.jpubeco.2019.104105 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:9.8
- 作者:
Ku, Hyejin;Schonberg, Uta;Schreiner, Ragnhild C. - 通讯作者:
Schreiner, Ragnhild C.
Why Are Single-Sex Schools Successful?
- DOI:
10.1016/j.labeco.2018.06.005 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:2.4
- 作者:
Dustmann, Christian;Ku, Hyejin;Kwak, Do Won - 通讯作者:
Kwak, Do Won
Ku, Hyejin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ku, Hyejin', 18)}}的其他基金
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
- 批准号:
RGPIN-2018-05880 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
- 批准号:
RGPIN-2018-05880 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
- 批准号:
RGPIN-2018-05880 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
- 批准号:
RGPIN-2018-05880 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Challenges in Financial Risk Analysis
金融风险分析中的数学挑战
- 批准号:
RGPIN-2018-05880 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
- 批准号:
293274-2013 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
- 批准号:
293274-2013 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
- 批准号:
293274-2013 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Measures of financial risk and derivative pricing
金融风险和衍生品定价的衡量标准
- 批准号:
293274-2007 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Measures of financial risk and derivative pricing
金融风险和衍生品定价的衡量标准
- 批准号:
293274-2007 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Hida-Malliavin分析方法在带跳正倒向随机系统及相关领域的应用
- 批准号:11871010
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
希尔伯特变换方法定价金融衍生品
- 批准号:11701266
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于大数据驱动的多变点统计推断理论及其在金融中应用
- 批准号:91646106
- 批准年份:2016
- 资助金额:43.0 万元
- 项目类别:重大研究计划
随机波动率模型下金融衍生产品定价中的条件蒙特卡罗加速方法
- 批准号:11626194
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于连续时间随机游走模型的期权定价
- 批准号:11601189
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced stochastic methods in mathematical finance and related fields
数学金融及相关领域的高级随机方法
- 批准号:
RGPIN-2014-05901 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Advanced stochastic methods in mathematical finance and related fields
数学金融及相关领域的高级随机方法
- 批准号:
RGPIN-2014-05901 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Geometric methods for dimensionality reductions of stochastic (partial) differential equations with applications to signal processing and finance
随机(偏)微分方程降维的几何方法及其在信号处理和金融中的应用
- 批准号:
1943803 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Studentship
Advanced stochastic methods in mathematical finance and related fields
数学金融及相关领域的高级随机方法
- 批准号:
RGPIN-2014-05901 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Methods in Finance
金融中的随机方法
- 批准号:
293274-2013 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual