Inference on Spatio-Temporal Log-Gaussian Cox Processes for Spatially Aggregated Disease Incidence Data
空间聚合疾病发病率数据的时空对数高斯 Cox 过程的推断
基本信息
- 批准号:342306-2012
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Motivated by the problem of understanding spatial variations in disease risk using routinely collected survey data, this project aims to develop models and statistical inference methods for spatially aggregated data spanning long time periods. When studying small-area variations in disease risk, where prediction of disease risk at a high resolution is required, the fact that exact case locations are unavailable becomes important. Further, the census regions and postal regions on which data are typically made available vary greatly in size being highly informative in urban areas and heavily censored in the less populated ares which dominate maps. Studies on small regions or rare outcomes require long study periods to accumulate sufficient cases. This introduces the problem of risk changing over time as well as changes to census and postal regions.
This project will build on the applicant's previous work by first extending the models to allow for changes in risk over time, and second by improving the method of statistical inference to allow for the higher dimensionality resulting from the shift to a spatio-temporal model. The existing Markov random field approximation to continuous spatial surfaces will be extended to approximate Markovian spatio-temporal processes with sparse precision matrices. Markov Chain Monte Carlo inference will be improved by using a number of recently developed methods such as Remiann manifold Langevin MCMC.
The methods will be developed with the aim of addressing substantive problems in the applied literature, with existing collaborations concerning Syphilis in North Carolina, Lupus in Toronto, and Mesothelioma lung cancer in western Ontario maintained and built upon. As a result of this work, a greater variety of problems in disease mapping will be able to be addressed, notably when case counts are low, aggregation is irregular, and spatio-temporal interactions are present.
该项目的动机是利用常规收集的调查数据了解疾病风险的空间变化,目的是为跨越长时间的空间汇总数据开发模型和统计推断方法。 在研究疾病风险的小区域变化时,需要以高分辨率预测疾病风险,无法获得确切病例位置的事实变得很重要。 此外,通常提供数据的人口普查地区和邮政地区的规模差异很大,在城市地区信息量很大,而在地图上人口较少的战神则受到严格审查。 对小区域或罕见结果的研究需要长时间的研究来积累足够的病例。 这就带来了风险随时间变化以及人口普查和邮政区域变化的问题。
该项目将建立在申请人以前的工作的基础上,首先扩展模型,以允许随着时间的推移风险的变化,其次通过改进统计推断的方法,以允许从转移到时空模型产生的更高维度。 现有的马尔可夫随机场近似连续空间表面将扩展到近似马尔可夫时空过程稀疏精度矩阵。 马尔可夫链蒙特卡罗推理将通过使用一些最近开发的方法,如Remiann流形Langevin MCMC得到改进。
这些方法将开发的目的是解决应用文献中的实质性问题,与现有的合作,关于Syphilis在北卡罗来纳州,狼疮在多伦多,间皮瘤肺癌在西部安大略维持和建立。 这项工作的结果是,将能够解决疾病绘图中的更多问题,特别是当病例数低、聚集不规则以及存在时空相互作用时。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brown, Patrick其他文献
Health Subjectivities and Labor Market Participation: Pessimism and Older Workers' Attitudes and Narratives Around Retirement in the United Kingdom
- DOI:
10.1177/0164027511410249 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:2.6
- 作者:
Brown, Patrick;Vickerstaff, Sarah - 通讯作者:
Vickerstaff, Sarah
The co-construction and emotion management of hope within psychosis services.
- DOI:
10.3389/fsoc.2023.1270539 - 发表时间:
2023 - 期刊:
- 影响因子:2.5
- 作者:
Brown, Patrick;Scrivener, Amanda;Calnan, Michael - 通讯作者:
Calnan, Michael
Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors
- DOI:
10.1182/blood-2006-04-015743 - 发表时间:
2006-11-15 - 期刊:
- 影响因子:20.3
- 作者:
Levis, Mark;Brown, Patrick;Small, Donald - 通讯作者:
Small, Donald
Decreased Induction Morbidity and Mortality Following Modification to Induction Therapy in Infants With Acute Lymphoblastic Leukemia Enrolled on AALL0631: A Report From the Children's Oncology Group
- DOI:
10.1002/pbc.25311 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:3.2
- 作者:
Salzer, Wanda L.;Jones, Tamekia L.;Brown, Patrick - 通讯作者:
Brown, Patrick
An exploratory study of the role of trust in medication management within mental health services
- DOI:
10.1007/s11096-011-9510-5 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:2.4
- 作者:
Maidment, Ian D.;Brown, Patrick;Calnan, Michael - 通讯作者:
Calnan, Michael
Brown, Patrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brown, Patrick', 18)}}的其他基金
Inference for complex epidemiological problems: censoring, mismeasurement, and high-dimensional problems
复杂流行病学问题的推理:审查、误测和高维问题
- 批准号:
RGPIN-2022-05164 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Managing Emerging Infectious Diseases
管理新发传染病的统计方法
- 批准号:
560514-2020 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Emerging Infectious Diseases Modelling Initiative (EIDM)
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Managing Emerging Infectious Diseases
管理新发传染病的统计方法
- 批准号:
560514-2020 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Emerging Infectious Diseases Modelling Initiative (EIDM)
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2017
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference on Spatio-Temporal Log-Gaussian Cox Processes for Spatially Aggregated Disease Incidence Data
空间聚合疾病发病率数据的时空对数高斯 Cox 过程的推断
- 批准号:
342306-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference on Spatio-Temporal Log-Gaussian Cox Processes for Spatially Aggregated Disease Incidence Data
空间聚合疾病发病率数据的时空对数高斯 Cox 过程的推断
- 批准号:
342306-2012 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Redefinition of the distribution of the Setouchi volcanic rocks and inference of the spatio-temporal distribution of the Miocene Shikoku Basin slab.
濑户内火山岩分布的重新定义及中新世四国盆地板片时空分布的推断.
- 批准号:
23K03533 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Conjugate Models for Exact MCMC free Bayesian Inference with Application to High-Dimensional Spatio-Temporal Data
开发用于精确 MCMC 免费贝叶斯推理的共轭模型并应用于高维时空数据
- 批准号:
2310756 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
- 批准号:
2152777 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
- 批准号:
2152776 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Continuing Grant
ATD: Collaborative Research: Causal Inference with Spatio-Temporal Data on Human Dynamics in Conflict Settings
ATD:协作研究:利用时空数据对冲突环境下的人类动态进行因果推断
- 批准号:
2124124 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Causal Inference with Spatio-Temporal Data on Human Dynamics in Conflict Settings
ATD:协作研究:利用时空数据对冲突环境下的人类动态进行因果推断
- 批准号:
2124463 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Causal Inference with Spatio-Temporal Data on Human Dynamics in Conflict Settings
ATD:协作研究:利用时空数据对冲突环境下的人类动态进行因果推断
- 批准号:
2124323 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Sequential Bayesian inference for spatio-temporal probabilistic models of changes in global vegetation and ocean properties using Earth Observation da
使用地球观测数据对全球植被和海洋特性变化的时空概率模型进行顺序贝叶斯推断
- 批准号:
2438462 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Studentship
Behavioural models in sequential inference about spatio-temporal structures
时空结构顺序推理的行为模型
- 批准号:
2108272 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Studentship
Building new models for spatio-temporal econometrics and thier statistical inference
建立时空计量经济学及其统计推断的新模型
- 批准号:
17H02508 - 财政年份:2017
- 资助金额:
$ 0.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)