Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
基本信息
- 批准号:RGPIN-2017-06856
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One feature of the `big data' era is that increasingly large amounts of spatial information are routinely collected and stored in administrative databases. This has enabled researchers to answer questions at a finer spatial scale than was previously possible, for instance examining variation in cancer risk within a city as opposed to between cities. These new data sources and the research questions which accompany them have required advancements to be made in the area of Spatial Statistics, as methods which were well suited to models for 50 health regions often work poorly when applied to data from 10,000 census regions.***This research plan will build on recent research to advance statistical methodology related to:***- forecasting cases of a health outcome at a high spatial resolution (census tracts, postal regions);***- fitting statistical models to spatial data at mixtures of spatial resolutions (i.e. point locations, postal codes, census regions);***- using administrative health data to address questions currently requiring clinical records; and***- simplifying statistical software for fitting spatio-temporal models.***New statistical methodologies will be developed to address important outstanding issues in each of these areas.**
“大数据”时代的一个特点是,越来越多的大量空间信息被例行收集并储存在行政数据库中。这使得研究人员能够在比以前更精细的空间尺度上回答问题,例如检查城市内癌症风险的变化,而不是城市之间。这些新的数据来源和伴随而来的研究问题需要在空间统计领域取得进展,因为非常适合50个卫生区域模型的方法在应用于10 000个人口普查区域的数据时往往效果不佳。这项研究计划将以最近的研究为基础,推进与以下方面有关的统计方法:*- 以高空间分辨率预测健康结果病例(人口普查区、邮政区);***- 将统计模型拟合到混合空间分辨率的空间数据(即点位置、邮政编码、普查区域);*- 使用行政健康数据来解决目前需要临床记录的问题;以及 *- 简化用于拟合时空模型的统计软件。将制定新的统计方法,以解决上述每个领域的重要未决问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brown, Patrick其他文献
Health Subjectivities and Labor Market Participation: Pessimism and Older Workers' Attitudes and Narratives Around Retirement in the United Kingdom
- DOI:
10.1177/0164027511410249 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:2.6
- 作者:
Brown, Patrick;Vickerstaff, Sarah - 通讯作者:
Vickerstaff, Sarah
The co-construction and emotion management of hope within psychosis services.
- DOI:
10.3389/fsoc.2023.1270539 - 发表时间:
2023 - 期刊:
- 影响因子:2.5
- 作者:
Brown, Patrick;Scrivener, Amanda;Calnan, Michael - 通讯作者:
Calnan, Michael
Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors
- DOI:
10.1182/blood-2006-04-015743 - 发表时间:
2006-11-15 - 期刊:
- 影响因子:20.3
- 作者:
Levis, Mark;Brown, Patrick;Small, Donald - 通讯作者:
Small, Donald
Decreased Induction Morbidity and Mortality Following Modification to Induction Therapy in Infants With Acute Lymphoblastic Leukemia Enrolled on AALL0631: A Report From the Children's Oncology Group
- DOI:
10.1002/pbc.25311 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:3.2
- 作者:
Salzer, Wanda L.;Jones, Tamekia L.;Brown, Patrick - 通讯作者:
Brown, Patrick
An exploratory study of the role of trust in medication management within mental health services
- DOI:
10.1007/s11096-011-9510-5 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:2.4
- 作者:
Maidment, Ian D.;Brown, Patrick;Calnan, Michael - 通讯作者:
Calnan, Michael
Brown, Patrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brown, Patrick', 18)}}的其他基金
Inference for complex epidemiological problems: censoring, mismeasurement, and high-dimensional problems
复杂流行病学问题的推理:审查、误测和高维问题
- 批准号:
RGPIN-2022-05164 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Managing Emerging Infectious Diseases
管理新发传染病的统计方法
- 批准号:
560514-2020 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Emerging Infectious Diseases Modelling Initiative (EIDM)
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Managing Emerging Infectious Diseases
管理新发传染病的统计方法
- 批准号:
560514-2020 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Emerging Infectious Diseases Modelling Initiative (EIDM)
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Latent-Gaussian Spatio-temporal models for complex problems
复杂问题的潜在高斯时空模型
- 批准号:
RGPIN-2017-06856 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Inference on Spatio-Temporal Log-Gaussian Cox Processes for Spatially Aggregated Disease Incidence Data
空间聚合疾病发病率数据的时空对数高斯 Cox 过程的推断
- 批准号:
342306-2012 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Inference on Spatio-Temporal Log-Gaussian Cox Processes for Spatially Aggregated Disease Incidence Data
空间聚合疾病发病率数据的时空对数高斯 Cox 过程的推断
- 批准号:
342306-2012 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Inference on Spatio-Temporal Log-Gaussian Cox Processes for Spatially Aggregated Disease Incidence Data
空间聚合疾病发病率数据的时空对数高斯 Cox 过程的推断
- 批准号:
342306-2012 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
强磁场下基于Hylleraas-Gaussian基的双电子双原子分子的谱结构
- 批准号:11504315
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
- 批准号:
EP/Y029631/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Fellowship
Gaussian Process Emulation for Mathematical Models of the Heart
心脏数学模型的高斯过程仿真
- 批准号:
2894114 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
- 批准号:
2306672 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Development of flood prediction method using particle filter and gaussian process regression
使用粒子滤波器和高斯过程回归开发洪水预测方法
- 批准号:
23K04052 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Understanding Laguerre-Gaussian laser-plasma interactions for applications in inertial fusion
了解拉盖尔-高斯激光-等离子体相互作用在惯性聚变中的应用
- 批准号:
2887040 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
- 批准号:
EP/X01259X/1 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant