Learning Hierarchical Generative Models: Theory and Applications
学习分层生成模型:理论与应用
基本信息
- 批准号:418196-2012
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, there has been a massive increase in computational power and the amount of data available from the web, video cameras, high-throughput genomic sequencing technologies, and various laboratory measurements. Building intelligent systems that can automatically discovery meaningful representations from such data, should lead to new scientific discoveries. For example, they can help neuroscientists analyze high-dimensional fMRI brain imaging data, or improve product recommendation systems of companies like Amazon.
My main scientific interest is to understand the computational principles required for discovering structure in large amounts of data. My proposed research concentrates on developing a novel framework for representing and learning large-scale deep generative models that support inferences at multiple levels. This new class of hierarchical probabilistic models provides a powerful tool for defining flexible probability distributions over high-dimensional data, and allows us to build rich probabilistic models that can automatically discover semantic regularities, structured relations, or invariances from large volumes of high-dimensional data.
Many existing machine learning systems today, such as support vector machines, are fundamentally limited in their ability to learn complex structural relations from high-dimensional data. Learning systems cannot cope with novel tasks for which they have not been specifically trained. My research aims to develop probabilistic models that are multi-functional, capable of extracting higher-order knowledge from data, and successfully transfer acquired knowledge to learning new tasks. These models hold great promise for making a big impact on many research areas, including computational biology, neuroscience, medical diagnosis, data mining, and robotics.
近年来,计算能力和可从网络、摄像机、高通量基因组测序技术和各种实验室测量获得的数据量有了巨大的增长。构建能够从这些数据中自动发现有意义的表示的智能系统,应该会带来新的科学发现。例如,它们可以帮助神经科学家分析高维fMRI脑成像数据,或者改进亚马逊等公司的产品推荐系统。
我的主要科学兴趣是理解在大量数据中发现结构所需的计算原理。我提出的研究集中在开发一个新的框架,用于表示和学习支持多层次推理的大规模深度生成模型。这类新的分层概率模型为定义高维数据上的灵活概率分布提供了一个强大的工具,并允许我们构建丰富的概率模型,这些模型可以从大量的高维数据中自动发现语义规则、结构化关系或不变性。
当今许多现有的机器学习系统,如支持向量机,在从高维数据中学习复杂结构关系的能力方面基本上是有限的。学习系统无法处理未经专门训练的新任务。我的研究目标是开发多功能的概率模型,能够从数据中提取高阶知识,并成功地将已获得的知识转移到学习新任务中。这些模型有望对许多研究领域产生重大影响,包括计算生物学、神经科学、医学诊断、数据挖掘和机器人学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salakhutdinov, Ruslan其他文献
Learning with Hierarchical-Deep Models
- DOI:
10.1109/tpami.2012.269 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:23.6
- 作者:
Salakhutdinov, Ruslan;Tenenbaum, Joshua B.;Torralba, Antonio - 通讯作者:
Torralba, Antonio
Semantic hashing
- DOI:
10.1016/j.ijar.2008.11.006 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:3.9
- 作者:
Salakhutdinov, Ruslan;Hinton, Geoffrey - 通讯作者:
Hinton, Geoffrey
Human-level concept learning through probabilistic program induction
- DOI:
10.1126/science.aab3050 - 发表时间:
2015-12-11 - 期刊:
- 影响因子:56.9
- 作者:
Lake, Brenden M.;Salakhutdinov, Ruslan;Tenenbaum, Joshua B. - 通讯作者:
Tenenbaum, Joshua B.
An Efficient Learning Procedure for Deep Boltzmann Machines
- DOI:
10.1162/neco_a_00311 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:2.9
- 作者:
Salakhutdinov, Ruslan;Hinton, Geoffrey - 通讯作者:
Hinton, Geoffrey
Don’t Copy the Teacher: Data and Model Challenges in Embodied Dialogue
不要模仿老师:具身对话中的数据和模型挑战
- DOI:
10.18653/v1/2022.emnlp-main.635 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Min, So Yeon;Zhu, Hao;Salakhutdinov, Ruslan;Bisk, Yonatan - 通讯作者:
Bisk, Yonatan
Salakhutdinov, Ruslan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salakhutdinov, Ruslan', 18)}}的其他基金
Statistical Machine Learning
统计机器学习
- 批准号:
1230940-2015 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Canada Research Chairs
Learning Hierarchical Generative Models: Theory and Applications
学习分层生成模型:理论与应用
- 批准号:
418196-2012 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning deep neural networks
学习深度神经网络
- 批准号:
463460-2014 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Learning Hierarchical Generative Models: Theory and Applications
学习分层生成模型:理论与应用
- 批准号:
418196-2012 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning Hierarchical Generative Models: Theory and Applications
学习分层生成模型:理论与应用
- 批准号:
418196-2012 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Efficient learning of deeply layered models
深层模型的高效学习
- 批准号:
372965-2009 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Postdoctoral Fellowships
Efficient learning of deeply layered models
深层模型的高效学习
- 批准号:
372965-2009 - 财政年份:2009
- 资助金额:
$ 1.46万 - 项目类别:
Postdoctoral Fellowships
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
- 批准号:
334607-2006 - 财政年份:2008
- 资助金额:
$ 1.46万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
- 批准号:
334607-2006 - 财政年份:2007
- 资助金额:
$ 1.46万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
- 批准号:
334607-2006 - 财政年份:2006
- 资助金额:
$ 1.46万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
相似国自然基金
丙烷脱氢Pt@hierarchical zeolite催化剂的设计制备与反应调控
- 批准号:22178062
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
- 批准号:
2339761 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
- 批准号:
2344586 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Functional-unit-based hierarchical nanocomposites for sustainable future
基于功能单元的分层纳米复合材料促进可持续未来
- 批准号:
FT230100436 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
ARC Future Fellowships
A Platform for Hierarchical Data-Driven Design, Fabrication, and Control of Modular Soft Robots with Slender Beams for Locomotion and Manipulation
用于具有细长梁的移动和操纵模块化软机器人的分层数据驱动设计、制造和控制平台
- 批准号:
23K26071 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Strategies for predicting functionality of polymer electrolyte membranes based on dynamics and hierarchical structures
基于动力学和分层结构的聚合物电解质膜功能预测策略
- 批准号:
24K08091 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
- 批准号:
2337507 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Open-world computer vision by detecting and tracking hierarchical objects
通过检测和跟踪分层对象来实现开放世界计算机视觉
- 批准号:
DE240100967 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




