A Strongly Polynomial Algorithm for Minimum Cost Generalized Flows
最小成本广义流的强多项式算法
基本信息
- 批准号:471591-2015
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Postgraduate Scholarships - Doctoral
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
无摘要- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lo, Venus其他文献
Lo, Venus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lo, Venus', 18)}}的其他基金
A Strongly Polynomial Algorithm for Minimum Cost Generalized Flows
最小成本广义流的强多项式算法
- 批准号:
471591-2015 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似海外基金
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
New Frontiers in Large-Scale Polynomial Optimisation
大规模多项式优化的新领域
- 批准号:
DE240100674 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
- 批准号:
2338091 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
- 批准号:
RGPIN-2020-04276 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
CNS Core: Small: Schedulability Analysis of Safety-Critical Real-Time Systems: Beyond Pseudo-polynomial Time Algorithms
CNS 核心:小型:安全关键实时系统的可调度性分析:超越伪多项式时间算法
- 批准号:
2141256 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
New Polynomial GCD and Factorization Algorithms and Software for Maple
Maple 的新多项式 GCD 和因式分解算法和软件
- 批准号:
576162-2022 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Alliance Grants
Global geometry of families of polynomial vector fields
多项式向量场族的全局几何
- 批准号:
RGPIN-2020-05145 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
- 批准号:
RGPIN-2018-06534 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




