Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
基本信息
- 批准号:2401482
- 负责人:
- 金额:$ 33.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award provides support for research in commutative algebra, with connections to algebraic geometry. Within this framework, commutative algebra investigates systems of polynomial equations whose solutions form geometric objects, such as curves and surfaces. The process of finding a curve or surface passing through a given set of points is commonly referred to as interpolation. Polynomial interpolation finds widespread applications in scientific disciplines such as data analysis, numerical analysis, computer graphics, and mathematical modeling. This project specifically focuses on higher order polynomial interpolation in situations when the underlying data exhibits symmetry. More broadly, it aims to analyze systems of polynomial equations equipped with symmetry using tools from commutative algebra. In addition to these contributions, the principal investigator will lead groups of undergraduate students in summer research, coordinate an undergraduate research hub at their institution, mentor graduate students and postdoctoral scholars, and organize events that support mathematicians from diverse groups.The PI will investigate three topics in commutative algebra generating current excitement: symbolic powers of ideals with applications to higher order polynomial interpolation, homological properties of symmetric ideals, and the algebraic Lefschetz property strengthened by the Hodge-Riemann relations. Symbolic powers of ideals encompass polynomials vanishing to a higher order on a given algebraic variety. The project will explore algebraic properties of symbolic power ideals endowed with additional structure encoding either symmetries of the underlying variety or other combinatorial information. Homological and enumerative properties for further classes of symmetric ideals will also be elucidated. Furthermore, the investigation will turn to graded Artinian Gorenstein algebras, serving as algebraic analogues for the cohomology rings of smooth projective algebraic varieties. While every cohomology ring of a smooth complex projective variety satisfies the Lefschetz theorems and Hodge-Riemann relations, the project aims to identify which Artinian Gorenstein algebras satisfy analogous algebraic properties.This project is jointly funded by the Algebra and Number Theory program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为交换代数的研究提供支持,并与代数几何有关。在这个框架内,交换代数研究多项式方程组,其解形成几何对象,如曲线和曲面。找到通过给定点集的曲线或曲面的过程通常称为插值。多项式插值在数据分析、数值分析、计算机图形学和数学建模等科学学科中有着广泛的应用。这个项目特别关注在底层数据呈现对称性的情况下的高阶多项式插值。更广泛地说,它的目的是分析系统的多项式方程配备对称使用工具从交换代数。 除了这些贡献之外,首席研究员还将带领本科生小组进行暑期研究,协调所在机构的本科生研究中心,指导研究生和博士后学者,并组织支持不同群体数学家的活动。PI将研究当前令人兴奋的交换代数中的三个主题:理想的符号幂及其在高阶多项式插值中的应用,对称理想的同调性质,以及由Hodge-Riemann关系加强的代数Lefschetz性质。理想的符号幂包含在给定代数簇上消失到高阶的多项式。该项目将探索符号幂理想的代数性质,赋予额外的结构编码基础品种的对称性或其他组合信息。同调和枚举性质的进一步类对称理想也将阐明。此外,调查将转向分次Artinian Gorenstein代数,作为光滑投射代数簇的上同调环的代数类似物。当光滑复射影簇的上同调环满足Lefschetz定理和Hodge-Riemann关系时,该项目旨在确定哪些Artinian Gorenstein代数满足类似的代数性质。该项目由代数与数论计划和刺激竞争研究的既定计划(EPSCoR)共同资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Seceleanu其他文献
The projective dimension of codimension two algebras presented by quadrics
- DOI:
10.1016/j.jalgebra.2013.06.038 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Craig Huneke;Paolo Mantero;Jason McCullough;Alexandra Seceleanu - 通讯作者:
Alexandra Seceleanu
Alexandra Seceleanu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Seceleanu', 18)}}的其他基金
Conference: Women in Commutative Algebra II
会议:交换代数中的女性 II
- 批准号:
2324929 - 财政年份:2023
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
Symbolic Powers and Lefschetz Properties: Geometric and Homological Aspects
符号幂和 Lefschetz 性质:几何和同调方面
- 批准号:
2101225 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
Conference on Unexpected and Asymptotic Properties of Projective Varieties
射影簇的意外和渐近性质会议
- 批准号:
1953096 - 财政年份:2020
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
Collaborative Proposal: Central States Mathematics Undergraduate Research Conferences
合作提案:中部各州数学本科生研究会议
- 批准号:
1811000 - 财政年份:2018
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
Symbolic Powers, Configurations of Linear Spaces, and Applications
符号幂、线性空间的配置及应用
- 批准号:
1601024 - 财政年份:2016
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
- 批准号:
2338345 - 财政年份:2024
- 资助金额:
$ 33.21万 - 项目类别:
Continuing Grant
Smooth Solutions to Linear Inequalities, Constrained Sobolev interpolation, and Trace Problems on Domains
线性不等式的平滑解、约束 Sobolev 插值和域上的追踪问题
- 批准号:
2247429 - 财政年份:2023
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
Developing a new estimation method of wide-are genetic diversity using spatial interpolation
利用空间插值开发一种新的大范围遗传多样性估计方法
- 批准号:
22KJ3108 - 财政年份:2023
- 资助金额:
$ 33.21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Distributed Graph-based Semi-supervised Classifiers: Sampling and Interpolation
基于分布式图的半监督分类器:采样和插值
- 批准号:
551992-2020 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Alliance Grants
Interpolation Techniques for Particle-In-Cell Methods
细胞内粒子方法的插值技术
- 批准号:
569325-2022 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Distributed Graph-based Semi-supervised Classifiers: Sampling and Interpolation
基于分布式图的半监督分类器:采样和插值
- 批准号:
551992-2020 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Alliance Grants
Trajectory error estimation for machining center cutter path due to motion error between interpolation segments
插补段之间运动误差引起的加工中心刀具轨迹轨迹误差估计
- 批准号:
21K03811 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interpolation Methods in Statistics and Machine Learning
统计和机器学习中的插值方法
- 批准号:
1953181 - 财政年份:2020
- 资助金额:
$ 33.21万 - 项目类别:
Continuing Grant
Distributed Graph-based Semi-supervised Classifiers: Sampling and Interpolation
基于分布式图的半监督分类器:采样和插值
- 批准号:
551992-2020 - 财政年份:2020
- 资助金额:
$ 33.21万 - 项目类别:
Alliance Grants
Smart Video Frame Interpolation using Compact Neural Networks
使用紧凑神经网络的智能视频帧插值
- 批准号:
554191-2020 - 财政年份:2020
- 资助金额:
$ 33.21万 - 项目类别:
University Undergraduate Student Research Awards