Robust Action Recognition using Depth-cameras for Rehabilitation and Bio-feedback Applications

使用深度相机进行稳健的动作识别,用于康复和生物反馈应用

基本信息

  • 批准号:
    491141-2015
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

With the emergence of inexpensive consumer level hybrid cameras (depth+color) such as the Kinect device (already at the second generation and that sold over 20 million units) and the Intel RealSense camera now standard in several laptop and tablet models opened the door to a whole new universe of consumer applications and a new era of home computing and gaming. Since they can acquire both geometric information as well as color information one of the benefits of such hybrid cameras is that they can, for the first time, facilitate real-time marker-less motion capture and action recognition. In fact these devices already are shipped with built in rudimentary motion capture and action recognition. Unfortunately, while inexpensive, these devices lack the accuracy and robustness required in medical applications such as rehabilitation software. In this project we will develop in partnership with Jintronix, new accurate as well as robust action recognition and motion capture methods based on consumer level depth-cameras.
随着廉价的消费级混合相机(深度+颜色)的出现,如Kinect设备 (已经是第二代,销量超过2000万台)和英特尔实感摄像头, 在几款笔记本电脑和平板电脑型号中标配,为消费者应用的全新领域打开了大门 以及家庭电脑和游戏的新时代。因为它们既可以获得几何信息, 颜色信息这种混合相机的好处之一是,它们可以,第一次, 实时无标记动作捕捉和动作识别。事实上,这些设备已经与内置的 基本的动作捕捉和动作识别不幸的是,虽然价格便宜,这些设备缺乏 医疗应用中所需的精度和鲁棒性,如康复软件。在这个项目中,我们将 与Jintronix合作开发新的准确和强大的动作识别和动作捕捉 基于消费级深度相机的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Popa, Tiberiu其他文献

High temperature water gas shift catalysts with alumina
  • DOI:
    10.1016/j.apcata.2010.02.021
  • 发表时间:
    2010-05-15
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Popa, Tiberiu;Xu, Guoqing;Argyle, Morris D.
  • 通讯作者:
    Argyle, Morris D.
Markerless garment capture
  • DOI:
    10.1145/1360612.1360698
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Bradley, Derek;Popa, Tiberiu;Boubekeur, Tamy
  • 通讯作者:
    Boubekeur, Tamy
Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol
  • DOI:
    10.1016/j.apcatb.2017.02.072
  • 发表时间:
    2017-07-15
  • 期刊:
  • 影响因子:
    22.1
  • 作者:
    Ding, Jie;Popa, Tiberiu;Zhong, Qin
  • 通讯作者:
    Zhong, Qin

Popa, Tiberiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Popa, Tiberiu', 18)}}的其他基金

A New Pipeline for Detailed Large Scale Geometry Acquisition and Analysis
用于详细的大规模几何采集和分析的新流程
  • 批准号:
    RGPIN-2021-03477
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
A garment acquisition pipeline for game asset retargetting
用于游戏资产重新定位的服装收购渠道
  • 批准号:
    561038-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
A New Pipeline for Detailed Large Scale Geometry Acquisition and Analysis
用于详细的大规模几何采集和分析的新流程
  • 批准号:
    RGPIN-2021-03477
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Computer aided tools for automation of industrial inspections
用于工业检查自动化的计算机辅助工具
  • 批准号:
    535746-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
A garment acquisition pipeline for game asset retargetting
用于游戏资产重新定位的服装收购渠道
  • 批准号:
    561038-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Next generation motion controller and synthesis for game characters
下一代运动控制器和游戏角色合成
  • 批准号:
    505237-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
High-fidelity, directable animation transfer using facial decomposition on optimized micro-sequences
使用优化微序列上的面部分解进行高保真、可定向动画传输
  • 批准号:
    522014-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Multimodal synchronous spatial-temporal acquisition of facial features and tongue for medical applications
用于医疗应用的面部特征和舌头的多模态同步时空采集
  • 批准号:
    RGPIN-2014-05884
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Computer aided tools for automation of industrial inspections**
用于工业检查自动化的计算机辅助工具**
  • 批准号:
    535746-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Next generation motion controller and synthesis for game characters
下一代运动控制器和游戏角色合成
  • 批准号:
    505237-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Intelligent Assembly Action Recognition for Next Generation Manufacturing
下一代制造的智能装配动作识别
  • 批准号:
    577388-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Fine-grained Human Action Recognition with Deep Graph Neural Networks
使用深度图神经网络进行细粒度人类动作识别
  • 批准号:
    DP210102674
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Projects
Investigating the Neurophysiological and Cognitive Bases of Action Recognition and the Sense of Agency
研究动作识别和代理感的神经生理学和认知基础
  • 批准号:
    RGPIN-2016-05484
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Perceiving Humans in Detail: Fine-grained classification of Human Action Recognition
详细感知人类:人类行为识别的细粒度分类
  • 批准号:
    2618530
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Developing Advanced Deep Learning Algorithms for Video-based Human Action Recognition
开发用于基于视频的人类动作识别的高级深度学习算法
  • 批准号:
    2640147
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Development of endoscopic treatment assistance system based on relationship modeling between recognition and action
基于识别与动作关系建模的内镜治疗辅助系统开发
  • 批准号:
    21K12723
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Action recognition support using hand signs to understand proximity space for visually impaired people
使用手势来支持动作识别以了解视障人士的邻近空间
  • 批准号:
    20K03101
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creating a Benchmark Dataset for Visual-Inertial Human Action Recognition
为视觉惯性人类动作识别创建基准数据集
  • 批准号:
    551237-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigating the Neurophysiological and Cognitive Bases of Action Recognition and the Sense of Agency
研究动作识别和代理感的神经生理学和认知基础
  • 批准号:
    RGPIN-2016-05484
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Video action recognition of Huskies football game footage
哈士奇足球比赛镜头的视频动作识别
  • 批准号:
    542078-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了