Probabilistic Graph Theory and Random Constraint Satisfaction Problems

概率图论和随机约束满足问题

基本信息

  • 批准号:
    RGPIN-2014-03858
  • 负责人:
  • 金额:
    $ 4.52万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

My research program encompasses many aspects of graph theory and related fields, and their role in theoretical computer science. Much of my work concentrates on areas which involve probability. Graph theory is a fascinating and important pure mathematical field which, with the advent of the computer age, gained a new importance because of its applied aspects. Many of the problems that arise in computer science are best modelled by graphs. For example, massive networks are massive graphs and the problem of finding good schedules is what is known as a graph colouring problem. Thus, over the past few decades, the use of graph theory to study computing has grown immensely. One of the most important modern trends in graph theory is the use of tools and concepts from probability theory. The probabilistic method is a powerful and elegant tool for proving theorems. Also, the use of random choices in algorithms has led to the development of much simpler and more efficient methods for many important problems. When studying the behaviour of an algorithm, we often ask how it performs on an average input, which amounts to analyzing its behaviour on a random input. This has led to a whole new need for the study of random graphs - a mathematical field that was introduced by Erdos and Renyi in the 1950's, long before its importance to computer science was realized. In more recent decades, random structures have been recognized as a vast source for difficult inputs that can be used for the testing and refinement of algorithms. Many of the most important problems in this field, eg. colouring of random graphs and random instances of boolean formulae, fall under the category of random constraint satisfaction problems. This area has attracted intense interest from disciplines including mathematics, computer science and physics. Recently, much of the leading research in this area has revolved around a collection of hypotheses developed by physicists. For the most part, these hypotheses are not rigorously established, but they are developed using substantial mathematical analysis. They explain many known phenomena and predict others involving, eg. the values of some intensively sought parameters (the "satisfiability thresholds''), and the long-standing observation that such problems tend to be algorithmically very challenging. Much of my research involves grounding these hypotheses with rigorous proofs, and understanding their implications.
我的研究项目涵盖了图论和相关领域的许多方面,以及它们在理论计算机科学中的作用。我的大部分工作集中在涉及概率的领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Molloy, Michael其他文献

Asymptotically optimal frugal colouring
The list chromatic number of graphs with small clique number
Noise Pollution: Do We Need a Solution? An Analysis of Noise in a Cardiac Care Unit
  • DOI:
    10.1017/s1049023x16000388
  • 发表时间:
    2016-08-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ryan, Kevin M.;Gagnon, Matthew;Molloy, Michael
  • 通讯作者:
    Molloy, Michael
VISTA expression and patient selection for immune-based anticancer therapy.
  • DOI:
    10.3389/fimmu.2023.1086102
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Martin, Alexander S.;Molloy, Michael;Ugolkov, Andrey;von Roemeling, Reinhard W.;Noelle, Randolph J.;Lewis, Lionel D.;Johnson, Melissa;Radvanyi, Laszlo;Martell, Robert E.
  • 通讯作者:
    Martell, Robert E.

Molloy, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Molloy, Michael', 18)}}的其他基金

Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2019
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2014-03858
  • 财政年份:
    2018
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2014-03858
  • 财政年份:
    2017
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2014-03858
  • 财政年份:
    2016
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2014-03858
  • 财政年份:
    2014
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic graph theory and theoretical computer science
概率图论和理论计算机科学
  • 批准号:
    184038-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic graph theory and theoretical computer science
概率图论和理论计算机科学
  • 批准号:
    184038-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平面三角剖分flip graph的强凸性研究
  • 批准号:
    12301432
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于graph的多对比度磁共振图像重建方法
  • 批准号:
    61901188
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
  • 批准号:
    61771009
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Graph和ISA的红外目标分割与识别方法研究
  • 批准号:
    61101246
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
中国Web Graph的挖掘与应用研究
  • 批准号:
    60473122
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
  • 批准号:
    23K03126
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extremal and Probabilistic Graph Theory
极值概率图论
  • 批准号:
    2746743
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Studentship
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2019
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2014-03858
  • 财政年份:
    2018
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2014-03858
  • 财政年份:
    2017
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2014-03858
  • 财政年份:
    2016
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2014-03858
  • 财政年份:
    2014
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了