Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
基本信息
- 批准号:RGPIN-2019-06522
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program encompasses many aspects of graph theory and related fields, and their role in theoretical computer science. Much of my work in these areas involves probability.******Graph theory is a fascinating and important pure mathematical field which, with the advent of modern computing, gained a new importance because of its applications. Many of the problems that arise in computer science are best modelled with graphs. For example, massive networks are massive graphs and the problem of finding good schedules is a graph colouring problem. So the use of graph theory to study computing has grown immensely.******One of the most important modern trends in graph theory is the use of tools and concepts from probability. The probabilistic method is a powerful and elegant tool for proving theorems and for designing algorithms. The use of random choices has led to the development of much simpler and more efficient algorithms for many fundamental problems. When studying the behaviour of an algorithm, we often ask how it performs on an average input, which amounts to analyzing its behaviour on a random input. This has led to a whole new need for the study of random graphs, a mathematical field that was introduced by Erdos and Renyi in the 1950's. Random structures have been recognized as a vast source for difficult inputs that can be used for the testing and refinement of algorithms.******Many of the most important problems in the field of random structures, eg colouring random graphs and the satisifiability of random boolean formulae, fall under the category of random constraint satisfaction problems. This area has attracted intense interest from disciplines including computer science, mathematics and physics. Recently, most of the leading work in this area has revolved around a collection of hypotheses developed by statistical physicists. For the most part, these hypotheses are not rigorously established, but they are developed using very heavy mathematical analysis. They explain many known phenomena and predict others involving, eg the values of some intensively sought parameters (the 'satisfiability thresholds') ad the longstanding observation that such problems tend to be algorithmically very challenging. Much of my research involves grounding these hypotheses with rigorous proofs and understanding their implications.**
我的研究计划涵盖了图理论和相关领域的许多方面及其在理论计算机科学中的作用。 我在这些领域的大部分工作都涉及概率。******图理论是一个引人入胜且重要的纯粹数学领域,随着现代计算的出现,由于其应用,它具有新的重要性。 计算机科学中出现的许多问题最好以图形为模型。 例如,大型网络是大量图形,找到良好的时间表的问题是图形着色问题。因此,将图理论用于研究计算的使用已经大大增长。概率方法是一种强大而优雅的工具,用于证明定理和设计算法。 随机选择的使用导致开发了许多基本问题的更简单,更有效的算法。 在研究算法的行为时,我们经常询问其在平均输入中的性能,这相当于在随机输入中分析其行为。 这导致了对随机图的研究的全新需求,这是Erdos和Renyi在1950年代引入的数学领域。随机结构被认为是可用于算法测试和完善的困难输入的广泛来源。****** ******随机结构领域中许多最重要的问题,例如随机颜色随机图和随机布尔格式的满足性,属于随机约束满意度问题的类别。 该领域吸引了包括计算机科学,数学和物理学在内的学科的浓厚兴趣。 最近,该领域的大多数主要工作围绕着统计物理学家提出的一系列假设。 在大多数情况下,这些假设不是严格确定的,但是它们是使用非常大的数学分析来开发的。他们解释了许多已知现象,并预测了其他现象,例如某些强烈寻求参数的价值(“满意度阈值”)是长期以来的观察结果,即这种问题往往是算法上非常具有挑战性的。 我的大部分研究都涉及将这些假设与严格的证据结合起来并理解它们的含义。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Molloy, Michael其他文献
The list chromatic number of graphs with small clique number
- DOI:
10.1016/j.jctb.2018.06.007 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:1.4
- 作者:
Molloy, Michael - 通讯作者:
Molloy, Michael
Cogan's syndrome: present and future directions
- DOI:
10.1007/s00296-009-0945-0 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:4
- 作者:
Murphy, Grainne;Sullivan, Miriam O.;Molloy, Michael - 通讯作者:
Molloy, Michael
Asymptotically optimal frugal colouring
- DOI:
10.1016/j.jctb.2009.07.002 - 发表时间:
2010-03-01 - 期刊:
- 影响因子:1.4
- 作者:
Molloy, Michael;Reed, Bruce - 通讯作者:
Reed, Bruce
Noise Pollution: Do We Need a Solution? An Analysis of Noise in a Cardiac Care Unit
- DOI:
10.1017/s1049023x16000388 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:2.2
- 作者:
Ryan, Kevin M.;Gagnon, Matthew;Molloy, Michael - 通讯作者:
Molloy, Michael
VISTA expression and patient selection for immune-based anticancer therapy.
- DOI:
10.3389/fimmu.2023.1086102 - 发表时间:
2023 - 期刊:
- 影响因子:7.3
- 作者:
Martin, Alexander S.;Molloy, Michael;Ugolkov, Andrey;von Roemeling, Reinhard W.;Noelle, Randolph J.;Lewis, Lionel D.;Johnson, Melissa;Radvanyi, Laszlo;Martell, Robert E. - 通讯作者:
Martell, Robert E.
Molloy, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Molloy, Michael', 18)}}的其他基金
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2019-06522 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2019-06522 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2019-06522 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2014-03858 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2014-03858 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2014-03858 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2014-03858 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2014-03858 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic graph theory and theoretical computer science
概率图论和理论计算机科学
- 批准号:
184038-2009 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic graph theory and theoretical computer science
概率图论和理论计算机科学
- 批准号:
184038-2009 - 财政年份:2012
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
跨媒介工程图形鲁棒水印理论与方法研究
- 批准号:62372128
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
有限像素下仿生视觉假体图像语义翻译研究
- 批准号:61806190
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
高维材质外观高效采集的设备、理论与方法研究
- 批准号:61772457
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
对称密码安全性分析中的若干关键问题研究
- 批准号:61672347
- 批准年份:2016
- 资助金额:63.0 万元
- 项目类别:面上项目
价键理论的轨道优化方法发展及XMVB程序开发
- 批准号:21503172
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
- 批准号:
23K03126 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2019-06522 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2019-06522 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
- 批准号:
RGPIN-2019-06522 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual