Quantum Electro-Mechanical Engineering of Nanosystems

纳米系统量子机电工程

基本信息

  • 批准号:
    RGPIN-2014-03996
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Electro-mechanical interactions are enhanced at the nanoscale, such that the boundary between mechanics and electronics can be blurred. To fully exploit quantum nanotechnology, it is essential to understand and control simultaneously the mechanics (phonons, strain, defects) and electronics (quantum phase, screening, correlations) of nanosystems. We will study this hybridization of electro-mechanics in some of the most promising and tunable nanomaterials: strain-engineered graphene, single-wall carbon nanotubes (SWCNTs) and monolayer MoS2. Our approach is unique as we have developed the methods to fabricate extremely clean and small transistors (< 10 - 50 nm) suited for strain-engineering. We will strain these devices up to 10%, while measuring their electronic spectrum at low T and under high magnetic fields. We will explore high-impact fundamental and applied science: (1) Strain transistors, valleytronics and strain-Quantum Hall Effect, (2) Strain engineering of the thermal conductivity and thermopower, (3) Ultra-strong electron-vibron coupling in nano-electromechanical systems (NEMS). The high-impact of the proposed work comes from two facts: our samples are roughly an order of magnitude smaller than most ultra-clean graphene/ SWCNT/ MoS2 suspended devices studied by other groups (stronger electro-mechanical coupling), and we will map out their electronic and thermal transport while controlling simultaneously their strain and electromagnetic environment. This unique exploration will allow us to make quantitative tests of the e-v couplings in NEMS, and strain engineering of electronic and thermal transport. For instance, using a uniaxial strain in ballistic graphene we aim to create mechanically controlled quantum transistors. Similarly, we expect to be able to control the thermal conductivity of graphene and the thermopower of molybdenum-disulfide using strain. We will also use strain to increase the frequency of nano-oscillators (NEMS) and reduce their energy dissipation. These studies are essential to exploit quantum nanotechnology where mechanics and electronics hybridize. We aim to build several proof-of-principle applied devices: strain-transistors, thermal transistors, ultra-high frequency NEMS and mechanical qubits.
机电相互作用在纳米尺度上得到增强,使得机械和电子之间的边界变得模糊。为了充分利用量子纳米技术,必须同时理解和控制纳米系统的力学(声子,应变,缺陷)和电子学(量子相位,屏蔽,相关性)。我们将在一些最有前途和可调的纳米材料中研究这种机电杂交:应变工程石墨烯,单壁碳纳米管(SWCNT)和单层MoS 2。我们的方法是独一无二的,因为我们已经开发出了适合应变工程的非常干净和小的晶体管(< 10 - 50 nm)的制造方法。我们将这些器件的应变高达10%,同时在低T和高磁场下测量它们的电子光谱。我们将探索高影响力的基础和应用科学:(1)应变晶体管,谷电子学和应变量子霍尔效应,(2)热传导和热电的应变工程,(3)纳米机电系统(NEMS)中的超强电子-振子耦合。 拟议工作的高影响力来自两个事实:我们的样品比其他小组研究的大多数超洁净石墨烯/ SWCNT/MoS 2悬浮设备大约小一个数量级(更强的机电耦合),我们将绘制出它们的电子和热输运,同时控制它们的应变和电磁环境。这种独特的探索将使我们能够对NEMS中的e-v耦合进行定量测试,以及电子和热输运的应变工程。例如,使用弹道石墨烯中的单轴应变,我们的目标是创建机械控制的量子晶体管。类似地,我们期望能够使用应变来控制石墨烯的热导率和二硫化铼的热电势。我们还将使用应变来增加纳米振荡器(NEMS)的频率并降低其能量耗散。这些研究对于利用机械和电子杂交的量子纳米技术至关重要。我们的目标是建立几个原理验证应用设备:应变晶体管,热晶体管,超高频NEMS和机械量子位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Champagne, Alexandre其他文献

Champagne, Alexandre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Champagne, Alexandre', 18)}}的其他基金

Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Interplays of structure and electronics in mesoscopic systems
介观系统中结构和电子学的相互作用
  • 批准号:
    336519-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
High-frequency Electronics to Study Quantum Electro-mechanics and Thermal Transport in Nanosystems
高频电子学研究纳米系统中的量子机电和热传输
  • 批准号:
    458520-2014
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)

相似国自然基金

蒽醌/石墨烯纳米复合材料电极的电催化氧还原性能及其在异相electro-Fenton-like体系中的应用研究
  • 批准号:
    21177017
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Materials World Network: Quantum Electro-Mechanical Properties of Graphene
材料世界网:石墨烯的量子机电特性
  • 批准号:
    0908634
  • 财政年份:
    2009
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Engineering Quantum Electro-Mechanical Systems Using Open-Loop Control
使用开环控制工程量子机电系统
  • 批准号:
    0902906
  • 财政年份:
    2009
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了