Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
基本信息
- 批准号:RGPIN-2014-04685
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New feedstocks and materials are introduced into the energy and chemical industries. The use of a catalyst is key to the development of environmentally friendly and economically feasible conversion processes (e.g. biomass, waste, and CO2 into fuels and chemicals). Reactor engineering research, catalysts design and understanding of the reaction mechanisms are of primary importance in optimizing not only product yields but also managing heat requirements. Modeling these catalyzed reactions is advantageous as it allows to easily and cost effective study the influence of operating conditions on the reactor and overall process performance. A good model can only be obtained if all relevant processes in a chemical reactor and their interactions are represented adequately. For this, accurate kinetic models are necessary that are obtained from experiments only.
Usually small laboratory reactors with a few hundred milligram of catalyst are used in which the gas compositions are measured at the reactor exit only. Thus, a single experiment results in a single data point. To avoid excessive temperature changes due to the nature of the reactions, highly diluted gas mixtures (>90% inert gas), diluted catalyst beds are used, and the reactor is operated at low conversion (<10%). These experimental conditions might be far away from industrial relevant settings.
The aim of the proposed research is the development of innovative instrumentation tools and experimental methodologies to build and evaluate sophisticated kinetics models for catalyzed reaction networks in the field of sustainable energy conversion. In detail, I plan to develop spatially-resolved measurement techniques that allows gathering information on gas composition, catalyst surface species and temperature profiles along the reactor axis. By doing so reaction kinetics, reaction mechanisms and transfer phenomena can be investigated in much more detail. Within this research program the reaction network of the production of synthetic natural gas (SNG) from biomass will be studied. The thermochemical conversion of biomass to SNG via gasification, gas cleaning, catalytic methanation and fuel upgrading is a process that has again become prominent. It allows to convert the chemical energy bound in a solid carbon form into a gaseous product, which can be easily transported in already existing natural gas pipelines. Bio-SNG could theoretically provide up to 60% of current natural gas demand in Canada, which makes this process very interesting for our domestic energy market.
The kinetic data for this reaction network, will be experimentally obtained in a newly designed optically accessible catalytic plate reactor. The bottom of the plate reactor is coated with a thin catalyst layer. The top of the reactor is closed with a special designed glass window through which the catalyst surface temperature profile is measured by means of infrared thermography. Spatially-resolved measurement of the gas composition is carried out with a thin movable sampling capillary achieving a high spatial resolution of ~200 µm, and thus a large number of data points for a single experiment. The concentration difference between two spatial positions is differential, but complete conversion can be achieve. Catalyst surface species along the reactor axis are measured by means of infrared spectroscopy (FTIR).
The developed tools can also be applied to investigate other catalyzed reactions such as reduction of NOx emissions in the automotive industry. The net result of this work will be a deeper understanding of catalyzed reaction mechanisms through the combination of comprehensive experimental observation and theoretical modeling, and trained personnel (4 graduate and 5 undergraduate students).
新的原料和材料被引入能源和化学工业。催化剂的使用是开发环境友好和经济可行的转化工艺(例如将生物质、废物和二氧化碳转化为燃料和化学品)的关键。反应器工程研究、催化剂设计和对反应机理的理解不仅在优化产品产率方面,而且在管理热量需求方面都至关重要。对这些催化反应进行建模是有利的,因为它允许容易且成本有效地研究操作条件对反应器和整体工艺性能的影响。一个好的模型只有在化学反应器中的所有相关过程及其相互作用都得到了充分的描述时才能得到。为此,精确的动力学模型是必要的,只能从实验中获得。
通常使用具有几百毫克催化剂的小型实验室反应器,其中仅在反应器出口处测量气体组成。因此,单个实验产生单个数据点。为了避免由于反应的性质导致的过度温度变化,使用高度稀释的气体混合物(>90%惰性气体)、稀释的催化剂床,并且反应器在低转化率(<10%)下操作。这些实验条件可能远离工业相关设置。
拟议研究的目的是开发创新的仪器工具和实验方法,以建立和评估可持续能源转换领域催化反应网络的复杂动力学模型。详细地说,我计划开发空间分辨测量技术,允许收集气体成分,催化剂表面物种和温度分布沿着反应器轴的信息。通过这样做,可以更详细地研究反应动力学、反应机理和转移现象。在本研究计划中,将研究从生物质生产合成天然气(SNG)的反应网络。通过气化、气体净化、催化甲烷化和燃料升级将生物质热化学转化为SNG是一个再次变得突出的过程。它可以将以固体碳形式结合的化学能转化为气态产物,可以在现有的天然气管道中轻松运输。生物SNG理论上可以提供加拿大目前天然气需求的60%,这使得这个过程对我们国内的能源市场非常有意义。
该反应网络的动力学数据,将在一个新设计的光学可达催化板反应器实验获得。板式反应器的底部涂覆有薄催化剂层。反应器的顶部用特殊设计的玻璃窗封闭,通过该玻璃窗,通过红外热成像法测量催化剂表面温度分布。气体成分的空间分辨测量是用一个薄的可移动的采样毛细管进行的,该毛细管实现了~200 µm的高空间分辨率,因此单个实验可以获得大量的数据点。两个空间位置之间的浓度差是不同的,但可以实现完全转换。通过红外光谱(FTIR)测量沿反应器轴沿着的催化剂表面物质。
所开发的工具也可以应用于研究其他催化反应,如减少汽车工业中的NOx排放。这项工作的最终结果将是通过综合实验观察和理论建模相结合,并培训人员(4名研究生和5名本科生),更深入地了解催化反应机理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kopyscinski, Jan其他文献
Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor
- DOI:
10.1016/j.catcom.2017.12.005 - 发表时间:
2018-03-05 - 期刊:
- 影响因子:3.7
- 作者:
Dutta, Kanchan;Li, Lu;Kopyscinski, Jan - 通讯作者:
Kopyscinski, Jan
Direct Nonoxidative Methane Coupling to Ethylene over Gallium Nitride: A Catalyst Regeneration Study
- DOI:
10.1021/acs.iecr.9b05548 - 发表时间:
2020-03-11 - 期刊:
- 影响因子:4.2
- 作者:
Dutta, Kanchan;Shahryari, Mohsen;Kopyscinski, Jan - 通讯作者:
Kopyscinski, Jan
Co-gasification of Biomass and Non-biomass Feedstocks: Synergistic and Inhibition Effects of Switchgrass Mixed with Sub-bituminous Coal and Fluid Coke During CO2 Gasification
- DOI:
10.1021/ef301567h - 发表时间:
2013-01-01 - 期刊:
- 影响因子:5.3
- 作者:
Habibi, Rozita;Kopyscinski, Jan;Hill, Josephine M. - 通讯作者:
Hill, Josephine M.
The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation
- DOI:
10.1016/j.apcata.2017.10.012 - 发表时间:
2018-01-05 - 期刊:
- 影响因子:5.5
- 作者:
Aljishi, Ali;Veilleux, Gabriel;Kopyscinski, Jan - 通讯作者:
Kopyscinski, Jan
Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation
- DOI:
10.1016/j.jcat.2010.02.008 - 发表时间:
2010-05-04 - 期刊:
- 影响因子:7.3
- 作者:
Kopyscinski, Jan;Schildhauer, Tilman J.;Wokaun, Alexander - 通讯作者:
Wokaun, Alexander
Kopyscinski, Jan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kopyscinski, Jan', 18)}}的其他基金
Metal nitrides - catalyst and process development towards value added chemicals.
金属氮化物 - 增值化学品的催化剂和工艺开发。
- 批准号:
RGPIN-2020-05216 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Metal nitrides - catalyst and process development towards value added chemicals.
金属氮化物 - 增值化学品的催化剂和工艺开发。
- 批准号:
RGPIN-2020-05216 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Power-to-gas process: development of a catalytic reactor concept
电转气工艺:催化反应器概念的开发
- 批准号:
514503-2017 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Development of a novel gallium nitride based catalyst for the direct non-oxidative methane aromatization
开发用于直接非氧化甲烷芳构化的新型氮化镓基催化剂
- 批准号:
534026-2018 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Metal nitrides - catalyst and process development towards value added chemicals.
金属氮化物 - 增值化学品的催化剂和工艺开发。
- 批准号:
RGPIN-2020-05216 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Development of a novel gallium nitride based catalyst for the direct non-oxidative methane aromatization
开发用于直接非氧化甲烷芳构化的新型氮化镓基催化剂
- 批准号:
534026-2018 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学可访问通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
- 批准号:
RGPIN-2014-04685 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Power-to-gas process: development of a catalytic reactor concept
电转气工艺:催化反应器概念的开发
- 批准号:
514503-2017 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学可访问通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
- 批准号:
RGPIN-2014-04685 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Power-to-gas process: development of a catalytic reactor concept
电转气工艺:催化反应器概念的开发
- 批准号:
514503-2017 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学可访问通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
- 批准号:
RGPIN-2014-04685 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学可访问通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
- 批准号:
RGPIN-2014-04685 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学可访问通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
- 批准号:
RGPIN-2014-04685 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
EAPSI: Determining Disk Galaxy Evolutionary State through Spatially-Resolved Gas Mass Fractions
EAPSI:通过空间分辨气体质量分数确定盘星系演化状态
- 批准号:
1613857 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Fellowship Award
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学可访问通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
- 批准号:
RGPIN-2014-04685 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Spatially resolved experimental analysis and modeling of mass transfer from rising gas bubbles under influence of swarm turbulence with superimposed chemical reaction
叠加化学反应群湍流影响下上升气泡传质的空间分辨实验分析和建模
- 批准号:
256704298 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Priority Programmes
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
- 批准号:
RGPIN-2014-04685 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Instrumentation for spatially and temporally resolved gas analysis
用于空间和时间解析气体分析的仪器
- 批准号:
389515-2010 - 财政年份:2009
- 资助金额:
$ 1.68万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Spectroscopy of a High Mobility, Low Dimensional Electron Gas by Time- and Spatially Resolved Spectroscopy
通过时间和空间分辨光谱法对高迁移率、低维电子气进行光谱分析
- 批准号:
9112329 - 财政年份:1991
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Spatially resolved studies on addressable defects in hybrid organic-inorganic perovskite microcrystals prepared in the gas-phase
气相制备的杂化有机-无机钙钛矿微晶中可寻址缺陷的空间分辨研究
- 批准号:
424156582 - 财政年份:
- 资助金额:
$ 1.68万 - 项目类别:
Priority Programmes