Betweenness, brain models, random number generators
介数、大脑模型、随机数生成器
基本信息
- 批准号:RGPIN-2014-05599
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose to work in two mutually unrelated areas: On the one hand, I propose investigating a conjectured generalization of a classical theorem concerning points and lines in the plane and on the other hand, I propose investigating the extent to which classical models of the brain can exhibit an erratic, disorderly, apparently unpredictable behaviour characteristic of an epileptic brain before onset of a seizure.
Any number of points in the plane determine a number of lines, each of which passes through at least two of these points. A theorem in euclidean geometry, dating back to the 1930s, asserts that the number of such lines is at least the number of the points unless all of the points lie on a single line (in which case this is the only line they determine). A conjecture announced in 2008 by my former student Xiaomin Chen and myself aspires to generalize this theorem to the setting of so-called metric spaces, introduced in 1906 by Maurice Frechet. A metric space is a set where a nonnegative real number is associated with every unordered pair of points; this number is referred to as the distance between the two points; it equals zero if and only if the two points are identical; it satisfies the 'triangle inequality', meaning that the distance from A to B plus the distance from B to C is at least the distance from A to C. In 1924, Karl Menger proposed to say that a point B in a metric space lies between points A and C to mean that the distance from A to B plus the distance from B to C equals the distance from A to C. Xiaomin and I defined the line XY in a metric space (where X,Y are two distinct points) as the set of all points Z such that one of X,Y,Z lies between the other two (in particular, the line XY includes both points X and Y) and we conjectured that in every metric space with n points there are at least n lines unless some line consists of all n points (in which case there may be additional lines as well).
A proof of this conjecture would reveal an iceberg, of which the original euclidean geometry theorem is just a tip. The motto 'be wise, generalize!' is the stimulus for much progress in mathematics and generalizations may have unexpected applications: one of the well-known examples is the use of non-euclidean geometry in special relativity. Even if the conjecture should turn out to be false in its full generality, it is already known to be true in four special cases. Demarcating the metric spaces where it holds true would be most interesting.
Epilepsy is a group of neurologic conditions, the common and fundamental characteristic of which is recurrent, unprovoked epileptic seizures. This affliction is widespread: there are over 50 million epilepsy sufferers in the world today. In attempts to study epilepsy in selected patients, firing patterns of neurons that are located predominantly in their cerebral cortex are recorded as time series called electroencephalograms (EEG). Even though different types of seizures have different EEG manifestations, one frequent occurrence is a transition from an irregular, disorderly EEG before the seizure (the pre-ictal state) to more organized sustained rhythm of spikes or sharp waves during the seizure (the ictal state).
In an effort to better understand the development of seizures, I intend to engineer existing models of the brain, so that they display seizure-like behaviour; my first short-term objective is to simulate the pre-ictal flutter of apparently unpredictable firing patterns. I propose to begin with the simplest, and chronologically first, model of the brain, the McCulloch-Pitts networks, before moving on to the biologically more plausible networks of spiking neurons.
我建议在两个相互不相关的领域开展工作:一方面,我建议研究一个关于平面上的点和线的经典定理的推测推广;另一方面,我建议研究大脑的经典模型在癫痫发作前表现出不稳定、无序、显然不可预测的行为特征的程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chvatal, Vasek其他文献
McCulloch-Pitts Brains and Pseudorandom Functions
- DOI:
10.1162/neco_a_00841 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:2.9
- 作者:
Chvatal, Vasek;Goldsmith, Mark;Yang, Nan - 通讯作者:
Yang, Nan
Chvatal, Vasek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chvatal, Vasek', 18)}}的其他基金
Betweenness, brain models, random number generators
介数、大脑模型、随机数生成器
- 批准号:
RGPIN-2014-05599 - 财政年份:2017
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Betweenness, brain models, random number generators
介数、大脑模型、随机数生成器
- 批准号:
RGPIN-2014-05599 - 财政年份:2016
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Betweenness, brain models, random number generators
介数、大脑模型、随机数生成器
- 批准号:
RGPIN-2014-05599 - 财政年份:2014
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Discrete mathematics
离散数学
- 批准号:
3333-1990 - 财政年份:1992
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Discrete mathematics
离散数学
- 批准号:
3333-1990 - 财政年份:1991
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
- 批准号:82371144
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
内源性蛋白酶抑制剂SerpinA3N对缺血性脑卒中后血脑屏障的保护作用及其表达调控机制
- 批准号:82371317
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
KLK10调控胶质—血管耦合与对话促缺血性卒中后血脑屏障修复的机制
- 批准号:82371465
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
精神分裂症进程中非对称性活跃脑结构改变的磁共振研究
- 批准号:81171275
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
精神分裂症脑网络异常的影像遗传学研究
- 批准号:81000582
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
盲人脑网络可塑性的磁共振影像研究
- 批准号:30900476
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
中枢神经系统Stat3对AQP4表达的调节作用及作用机制研究
- 批准号:30800355
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
- 批准号:
10752553 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
EEG Based Global Network Models and Platform for Brain States Assessment
基于脑电图的大脑状态评估全球网络模型和平台
- 批准号:
DP240102329 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Projects
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Brain Metabolome Atlas in Schizophrenia Mouse Models
精神分裂症小鼠模型的脑代谢组图谱
- 批准号:
23H02833 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging deep biology for brain resilience to AD pathology
利用深层生物学增强大脑对 AD 病理的恢复能力
- 批准号:
486679 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Operating Grants
Cell of origin dependencies in pediatric high-grade gliomas
儿科高级神经胶质瘤的起源细胞依赖性
- 批准号:
480066 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Operating Grants