BPS states from number theory to knot homology

BPS 从数论到结同调性

基本信息

  • 批准号:
    SAPIN-2014-00030
  • 负责人:
  • 金额:
    $ 4.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Subatomic Physics Envelope - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

In the general field of science, mathematics and physics are neighbouring disciplines. Throughout history, the two subjects have exchanged ideas and results, and benefitted from each other. Traditionally, information can flow in both directions -- requirements of physical theories can draw on an existing mathematical structure, or point to new ones, and mathematical results can confirm physical intuition or establish some hitherto unknown property of the physical theory. The youngest and arguably one of the most promising branches of mathematical physics which manifests this mixture is the one stemming from string theory: Efforts of high-energy physicists trying to understand quantum gravity, and to unify the fundamental interactions, have required the use of sophisticated mathematical machinery and, conversely, influenced or directly contributed new results in pure mathematics. Perhaps somewhat surprisingly, the interaction has been with areas of mathematics that, for large parts of the 20th century, have been disconnected from developments in theoretical physics, most notably algebraic geometry and low-dimensional topology. The new connections not only enrich both fields, but also provide a sustainable source of confidence that string theory is on the right track to becoming the next milestone in humanity's understanding of the Universe, particle physics, and cosmology. This research program is focused on two concrete visions for future progress in the field of mathematical string theory: (1) The unification of topological quantum theory as a kind of simplified version of the all-encompassing theory itself. Unravelling the mysteries of knots and links is the area in which this unification is most likely to first come together; and (2) The connections with number theory. The recent progress in areas ranging from three-manifolds to categorification to Langlands duality to mirror symmetry is evidence that the many parallels discovered over the years will extend much further to the heart of the two subjects. A large and rapidly growing worldwide community of mathematicians and physicists is working at the string-theoretic interface of the two disciplines. A strong testimony to the growing public interest is the establishment of several interdisciplinary research centres, prizes, and conference series around the world. Canadian Universities have made strategic decisions to expand in this area in recent years, as the reputation of our society stands to gain from the advancement of knowledge in those two most fundamental sciences.
在一般的科学领域,数学和物理是相邻的学科。纵观历史,这两门学科交流了思想和成果,相互受益。传统上,信息可以双向流动——物理理论的要求可以借鉴现有的数学结构,或者指向新的数学结构,数学结果可以证实物理直觉或建立物理理论的一些迄今为止未知的性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walcher, Johannes其他文献

Fluxes, vacua, and tadpoles meet Landau-Ginzburg and Fermat
通量、真空和蝌蚪遇见兰道-金茨堡和费马
  • DOI:
    10.1007/jhep12(2022)083
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Becker, Katrin;Gonzalo, Eduardo;Walcher, Johannes;Wrase, Timm
  • 通讯作者:
    Wrase, Timm
On the unipotence of autoequivalences of toric complete intersection Calabi-Yau categories
  • DOI:
    10.1007/s00208-011-0704-x
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Herbst, Manfred;Walcher, Johannes
  • 通讯作者:
    Walcher, Johannes

Walcher, Johannes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walcher, Johannes', 18)}}的其他基金

Mathematical String Theory
数学弦论
  • 批准号:
    1222524-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
BPS states from number theory to knot homology
BPS 从数论到结同调性
  • 批准号:
    SAPIN-2014-00030
  • 财政年份:
    2014
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Mathematical String Theory
数学弦论
  • 批准号:
    1000222524-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Mirror symmetry, topological strings and gauge theory
镜像对称、拓扑弦和规范理论
  • 批准号:
    401722-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Mathematical String Theory
数学弦论
  • 批准号:
    1000222524-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Mathematical String Theory
数学弦论
  • 批准号:
    1000222524-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Mirror symmetry, topological strings and gauge theory
镜像对称、拓扑弦和规范理论
  • 批准号:
    401722-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Mathematical String Theory
数学弦论
  • 批准号:
    1000222524-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Mirror symmetry, topological strings and gauge theory
镜像对称、拓扑弦和规范理论
  • 批准号:
    401722-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Subatomic Physics Envelope - Individual

相似国自然基金

双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cell cycle timing and molecular mechanisms of structural variant formation following incomplete replication
不完全复制后结构变异形成的细胞周期时间和分子机制
  • 批准号:
    10656861
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
Immunogenomic predictors of outcomes in patients with locally advanced cervical cancer treated with immunotherapy and chemoradiation
接受免疫治疗和放化疗的局部晚期宫颈癌患者结果的免疫基因组预测因子
  • 批准号:
    10908093
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
The Variation of the NK Cell Receptome in Pemphigus
天疱疮NK细胞受体组的变异
  • 批准号:
    10750358
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
Molecular biomarkers of future aggressive behavior in pituitary tumors
垂体瘤未来攻击行为的分子生物标志物
  • 批准号:
    10650948
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
Genomic marker to distinguish aggressive and indolent prostate cancer
区分侵袭性和惰性前列腺癌的基因组标记
  • 批准号:
    10820859
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
Associations of Mitochondrial DNA Alterations with Alzheimer's Disease Related Brain Health
线粒体 DNA 改变与阿尔茨海默病相关大脑健康的关联
  • 批准号:
    10724103
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
Investigating the Role of Somatic Mutations in Neurofibromatosis Brain
研究体细胞突变在神经纤维瘤病脑中的作用
  • 批准号:
    10722624
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
Male pesticide exposure, reproductive health and epigenetics
男性农药接触、生殖健康和表观遗传学
  • 批准号:
    10733537
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
Radon exposure in relation to the risk of cognitive impairment and mitochondrial function
氡暴露与认知障碍和线粒体功能风险相关
  • 批准号:
    10591204
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
Data Analysis Center for Somatic Mosaicism Across Human Tissues Network
人体组织网络体细胞镶嵌数据分析中心
  • 批准号:
    10662721
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了