Metaheuristics and Heuristics for Global Optimization Problems

全局优化问题的元启发式和启发式

基本信息

  • 批准号:
    RGPIN-2015-05522
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The quadratic assignment problem (QAP) was introduced in 1957 as a mathematical model for the location of a set of indivisible economical activities. Consider the problem of allocating a set of facilities to a set of locations, with the cost being a function of the distance and flow between the facilities, plus costs associated with a facility being placed at a certain location. The objective is to assign each facility to a location such that the total cost is minimized. It was shown that the QAP is NP-hard (Non-deterministic Polynomial-time hard), and that even finding an approximate solution within some constant factor from the optimal solution cannot be done in polynomial time unless P=NP. In fact the QAP, in contrast with its linear counterpart the linear assignment problem, remains one of the hardest optimization problems and no exact algorithm can solve problems of size n > 20. QAP is an example of a global combinatorial optimization, important in operations research and theoretical computer science. Global optimization problems fall within the broader class of nonlinear optimization.
二次分配问题(QAP)作为一组不可分割的经济活动的定位数学模型于1957年提出。考虑将一组设施分配到一组地点的问题,成本是设施之间的距离和流量的函数,加上与设施放置在某一地点有关的成本。目标是将每个设施分配到一个位置,使总成本最小化。证明了QAP是NP-hard (Non-deterministic polynomial -time hard),并且即使在最优解的某个常数因子内找到近似解也不能在多项式时间内完成,除非P=NP。事实上,与线性分配问题相比,QAP仍然是最难的优化问题之一,没有精确的算法可以解决规模为n的问题。QAP是全局组合优化的一个例子,在运筹学和理论计算机科学中很重要。全局优化问题属于广义的非线性优化问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tawhid, Mohamed其他文献

Tawhid, Mohamed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tawhid, Mohamed', 18)}}的其他基金

Metaheuristics and Heuristics for Combinatorial and Discrete Optimization Problems
组合和离散优化问题的元启发式和启发式
  • 批准号:
    DDG-2021-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Development Grant
Metaheuristics and Heuristics for Combinatorial and Discrete Optimization Problems
组合和离散优化问题的元启发式和启发式
  • 批准号:
    DDG-2021-00019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Development Grant
Metaheuristics and Heuristics for Global Optimization Problems
全局优化问题的元启发式和启发式
  • 批准号:
    RGPIN-2015-05522
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Metaheuristics and Heuristics for Global Optimization Problems
全局优化问题的元启发式和启发式
  • 批准号:
    RGPIN-2015-05522
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Metaheuristics and Heuristics for Global Optimization Problems
全局优化问题的元启发式和启发式
  • 批准号:
    RGPIN-2015-05522
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Metaheuristics and Heuristics for Global Optimization Problems
全局优化问题的元启发式和启发式
  • 批准号:
    RGPIN-2015-05522
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic mathematical programs with equilibrium constraints
具有平衡约束的随机数学程序
  • 批准号:
    311631-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Portfolio management investment system
投资组合管理系统
  • 批准号:
    446501-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program
Stochastic mathematical programs with equilibrium constraints
具有平衡约束的随机数学程序
  • 批准号:
    311631-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic mathematical programs with equilibrium constraints
具有平衡约束的随机数学程序
  • 批准号:
    311631-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Constructing a mathematical foundation for heuristics based on transfer learning
构建基于迁移学习的启发式数学基础
  • 批准号:
    23K16960
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Heuristics and Biases are (Nearly) Optimal: A Fresh Programmatic Study of Heuristics and Biases in Human Decision-Making
启发式和偏见(几乎)最优:人类决策中启发式和偏见的一项新的程序研究
  • 批准号:
    RGPIN-2021-03434
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Heuristics for Social Network Analysis
社交网络分析的启发式方法
  • 批准号:
    RGPIN-2021-03181
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Metaheuristics and Heuristics for Combinatorial and Discrete Optimization Problems
组合和离散优化问题的元启发式和启发式
  • 批准号:
    DDG-2021-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Development Grant
Class group heuristics in thin families of global fields
全球领域薄族中的类组启发式
  • 批准号:
    568416-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Postdoctoral Fellowships
Investigating the heuristics of complex, multi-parameter dynamic phenomena via consideration of next generation small reactors and waste installations
通过考虑下一代小型反应堆和废物装置来研究复杂的多参数动态现象的启发式
  • 批准号:
    DDG-2021-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Development Grant
CAREER: Theory, Heuristics, and Data for Arithmetic Invariants
职业:算术不变量的理论、启发式和数据
  • 批准号:
    2309115
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Heuristics for Combinatorial Optimisation
组合优化的启发式方法
  • 批准号:
    2732408
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Heuristics for Social Network Analysis
社交网络分析的启发式方法
  • 批准号:
    RGPIN-2021-03181
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Perceptual and Oculomotor Heuristics for Enhancing Radiologic Performance
用于增强放射学性能的新颖感知和动眼神经启发法
  • 批准号:
    10220201
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了