Heuristics for Social Network Analysis

社交网络分析的启发式方法

基本信息

  • 批准号:
    RGPIN-2021-03181
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Social networks have been used to model a comprehensive range of real-life phenomena. Social networks analysis is the study of such networks to discover common structural patterns and explains their emergence through computational models of network formation. The complexity and dynamics are essential properties of such networks. Since these networks evolve quickly over time through the appearance or disappearance of new links and nodes, the connections become stronger and weaker with underlying network structure changing over time. Researchers are embarked on examining various issues in social network analysis such as classification of nodes, detection of communities, formation of teams, and prediction of links between nodes. Ubiquity and growing popularity of social networks present the challenging task to analyze the massively increasing datasets of social interactions in an efficient manner. Vast amounts of knowledge can be extracted and presented into the hands of domain experts to help make important decisions. However, without timely and accurate predictions, opportunities are missed. This research explores Deep Learning methods including hybrid approaches as well as population-based evolution algorithms for pioneering efficient community detection and link prediction frameworks with increased accuracy in large, complex, and dynamic social networks. For instance, by studying common neighbors based subgraphs of a target link and using feature matrices for learning the transitional pattern for a given dynamic network, we effectively transform the dynamic link prediction to a video classification problem and enable the use of Convolutional Neural Networks . On another front, classification of nodes induces the formation of clusters. The prediction of links brings about correlations and/or ties formation. By studying edge sampling techniques, and examining an architecture with distinct representation learning layers, we exploit feature-extraction and dimensionality-reduction to enhance automatic extraction of facts from the network structure. By partnering with domain experts from other disciplines we can effectively develop these frameworks into decision support models of real-world value and validate them in their respective domain. This research pioneers link prediction and community detection methods for social network analysis by stepping up innovation, seeking efficiency and accuracy, while handling dynamic and fast increasing network data. The program further aims to tackle team formation problems and health networks by capitalizing on new innovations in population based evolutionary heuristics, as well as deep learning approaches. Practical outcomes include the adaptation of novel algorithms from benchmark tests and embedding them into agent-based models to serve as useful tools for decision support that can be used by domain experts from other disciplines such as healthcare leaders.
社交网络已被用于模拟各种各样的现实生活现象。社交网络分析是对这种网络的研究,以发现共同的结构模式,并通过网络形成的计算模型来解释它们的出现。复杂性和动态性是这种网络的基本属性。由于这些网络通过新链接和节点的出现或消失而随着时间的推移快速发展,因此连接随着底层网络结构的变化而变得更强或更弱。研究人员开始研究社会网络分析中的各种问题,如节点分类,社区检测,团队组建和节点之间的链接预测。社交网络的普遍存在和日益普及提出了以有效的方式分析大量增加的社交交互数据集的挑战性任务。大量的知识可以被提取出来并呈现给领域专家,以帮助他们做出重要的决策。然而,如果没有及时和准确的预测,机会就会错过。本研究探索了深度学习方法,包括混合方法以及基于群体的进化算法,用于开拓高效的社区检测和链接预测框架,并在大型,复杂和动态的社交网络中提高准确性。例如,通过研究目标链接的基于公共邻居的子图,并使用特征矩阵来学习给定动态网络的过渡模式,我们有效地将动态链接预测转换为视频分类问题,并启用卷积神经网络。另一方面,节点的分类导致集群的形成。链接的预测带来相关性和/或关系的形成。通过研究边缘采样技术,并检查具有不同表示学习层的体系结构,我们利用特征提取和降维来增强从网络结构中自动提取事实。通过与来自其他学科的领域专家合作,我们可以有效地将这些框架开发成具有现实价值的决策支持模型,并在各自的领域中对其进行验证。本研究在处理动态、快速增长的网络数据的同时,通过不断创新,追求效率和准确性,开创了社会网络分析中的链接预测和社区检测方法。该计划进一步旨在通过利用基于人口的进化生物学的新创新以及深度学习方法来解决团队组建问题和健康网络。实际成果包括从基准测试中改编新算法,并将其嵌入到基于代理的模型中,作为决策支持的有用工具,可供医疗保健领导者等其他学科的领域专家使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kobti, Ziad其他文献

Modelling prehispanic Pueblo societies in their ecosystems
  • DOI:
    10.1016/j.ecolmodel.2012.01.002
  • 发表时间:
    2012-08-24
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kohler, Timothy A.;Bocinsky, R. Kyle;Kobti, Ziad
  • 通讯作者:
    Kobti, Ziad
THE COEVOLUTION OF GROUP SIZE AND LEADERSHIP: AN AGENT-BASED PUBLIC GOODS MODEL FOR PREHISPANIC PUEBLO SOCIETIES
  • DOI:
    10.1142/s0219525911003256
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Kohler, Timothy A.;Cockburn, Denton;Kobti, Ziad
  • 通讯作者:
    Kobti, Ziad

Kobti, Ziad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kobti, Ziad', 18)}}的其他基金

Heuristics for Social Network Analysis
社交网络分析的启发式方法
  • 批准号:
    RGPIN-2021-03181
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Emotion Analysis in Twitter: Detecting an important event and its influence on the public mood
Twitter 中的情绪分析:检测重要事件及其对公众情绪的影响
  • 批准号:
    462601-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Engage Grants Program
Evolutionary learning in complex social system
复杂社会系统中的进化学习
  • 批准号:
    327482-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary learning in complex social system
复杂社会系统中的进化学习
  • 批准号:
    327482-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary learning in complex social system
复杂社会系统中的进化学习
  • 批准号:
    327482-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary learning in complex social system
复杂社会系统中的进化学习
  • 批准号:
    327482-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary learning in complex social system
复杂社会系统中的进化学习
  • 批准号:
    327482-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary learning in complex social networks
复杂社交网络中的进化学习
  • 批准号:
    327482-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary learning in complex social networks
复杂社交网络中的进化学习
  • 批准号:
    327482-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary learning in complex social networks
复杂社交网络中的进化学习
  • 批准号:
    327482-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

小型类人猿合唱节奏的功能假说——宣 示社会关系(Social bond advertising) ——验证研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目
多语言环境下Social Tagging的内涵机理与应用框架研究-基于比较的视角
  • 批准号:
    71103203
  • 批准年份:
    2011
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
  • 批准号:
    24K16438
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experts and enthusiasts: Sangaku as a social network
专家和爱好者:Sangaku 作为社交网络
  • 批准号:
    24K15964
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
IntBIO: Collaborative Research: Feedback between physiological performance and social foraging in multi-species social network of wintering birds
IntBIO:合作研究:越冬鸟类多物种社交网络中生理表现和社交觅食之间的反馈
  • 批准号:
    2316374
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
CAREER: Transactive Resilience: Uncovering the Effects of Social Network and Communal Capacity on Disaster Community Resilience
职业:交互复原力:揭示社交网络和社区能力对灾害社区复原力的影响
  • 批准号:
    2235583
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Understanding the Social Network Premium in Hiring Low Wage Workers
了解雇佣低薪工人的社交网络溢价
  • 批准号:
    2242582
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
  • 批准号:
    10724756
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Network Connector: DEDICATE: Data Science Equity-Driven Inquiry to Create Accessible Project-based Training for Social Impact Education
网络连接器:DEDICATE:数据科学公平驱动的探究,为社会影响力教育创建可访问的基于项目的培训
  • 批准号:
    2304100
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Geospatial and Social Network Analysis of the Imperial Diet of Japan and Pre-War Elections
日本帝国议会和战前选举的地理空间和社会网络分析
  • 批准号:
    23K12412
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modelling Tourist's Value Evaluation in the Social Network Era
社交网络时代游客价值评估建模
  • 批准号:
    23K11636
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Proto-OKN Theme 1: A Dynamically-Updated Open Knowledge Network for Health: Integrating Biomedical Insights with Social Determinants of Health
Proto-OKN 主题 1:动态更新的健康开放知识网络:将生物医学见解与健康的社会决定因素相结合
  • 批准号:
    2333740
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了