Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
基本信息
- 批准号:250508-2013
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent developments in the technology from handheld devices to sensors to surveillance to microarrays to the wide availability of the Web (e.g., social media, social networking, internet of things, click stream, etc.) allow for electronically capturing, collecting and maintaining huge volumes of structured and unstructured data leading to big data repositories. Example data sources include logs and transactions related to information retrieval via Web access, to e-commerce such as click streams and retail purchases, on-going events such as weather and stock market status, social interactions such as social media and social networking, monitoring systems such as traffic control, fraud detection, and homeland security, and so on. Such data is recognized as a valuable resource for knowledge discovery leading to effective decision making. Yet this can happen only if these large volumes of data can be processed and analyzed effectively, which is increasingly problematic to do by conventional means. Sometimes the data could be skewed where the number of data instances is small compared to the huge number of features like having hundreds of samples and thousands of genes; this could be fixed by data enrichment. In addition, real data generally suffers from various other interrelated problems that require dealing with dimensionality reduction, missing values and noise, scalability under limited computing power (i.e., using commonly available computers), data modeling and integration to uncover specific semantics (e.g., capturing and monitoring behavior and trend in social media data to allow for better recommendations), etc. These problems cannot be treated in isolation and hence there is a need for an integrated framework capable of handling any combination of these problems when present in the data.
从手持设备到传感器,监视到微阵列,再到网络的广泛可用性(例如社交媒体,社交网络,物联网,点击流等)的最新发展,可以通过电子方式捕获,收集,并维持大量的结构化和未结构化的数据,从而导致大数据相互依赖。示例数据源包括通过Web访问信息检索与信息检索有关的日志和交易,例如点击流和零售购买,例如天气和股票市场状况,例如社交媒体和社交网络,例如交通控制,欺诈检测以及诸如社交媒体和社交网络,例如,欺诈检测以及诸如社交互动,等等。这些数据被认为是知识发现的宝贵资源,从而导致有效的决策。然而,只有在可以有效地处理和分析这些大量数据时,这种情况才会发生,这越来越有问题地通过常规手段来做。有时,与拥有数百个样本和数千个基因(数百个样品和数千个基因)相比,数据实例数量少,数据可能会偏斜。这可以通过数据丰富来解决。此外,实际数据通常遇到其他各种相互关联的问题,这些问题需要处理尺寸降低,缺失价值和噪声,在有限的计算能力下的可伸缩性(即使用常见的计算机),数据建模和集成以发现特定的语义学(例如,捕获和监视的趋势,都可以在社交媒体中捕获和监控范围,以造成更好的建议和HE的趋势等。数据中存在这些问题的组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alhajj, Reda其他文献
Web outlier mining: Discovering outliers from web datasets
- DOI:
10.3233/ida-2005-9505 - 发表时间:
2005-01-01 - 期刊:
- 影响因子:1.7
- 作者:
Agyemang, Malik;Barker, Ken;Alhajj, Reda - 通讯作者:
Alhajj, Reda
Genomic Biomarker Discovery in Disease Progression and Therapy Response in Bladder Cancer Utilizing Machine Learning.
- DOI:
10.3390/cancers15194801 - 发表时间:
2023-09-29 - 期刊:
- 影响因子:5.2
- 作者:
Liosis, Konstantinos Christos;Al Marouf, Ahmed;Rokne, Jon G.;Ghosh, Sunita;Bismar, Tarek A.;Alhajj, Reda - 通讯作者:
Alhajj, Reda
Prognostic proteins and prognostic miRNAs that were extracted from the 84 and 85 protein and miRNA lists respectively based on univariate regression analysis.
- DOI:
10.1371/journal.pone.0084261.t003 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:0
- 作者:
Alhajj, Reda;Alshalalfa, Mohammed;Bader, Gary D - 通讯作者:
Bader, Gary D
Effective gene expression data generation framework based on multi-model approach
- DOI:
10.1016/j.artmed.2016.05.003 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:7.5
- 作者:
Sirin, Utku;Erdogdu, Utku;Alhajj, Reda - 通讯作者:
Alhajj, Reda
Complex networks driven salient region detection based on superpixel segmentation
- DOI:
10.1016/j.patcog.2017.01.010 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:8
- 作者:
Aksac, Alper;Ozyer, Tansel;Alhajj, Reda - 通讯作者:
Alhajj, Reda
Alhajj, Reda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alhajj, Reda', 18)}}的其他基金
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Integrating network analysis and data mining techniques into effective framework for managing charities and donors: from data repository handling to recommendations
将网络分析和数据挖掘技术集成到管理慈善机构和捐助者的有效框架中:从数据存储库处理到建议
- 批准号:
477398-2014 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Collaborative Research and Development Grants
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
大数据环境中的后量子高效函数加密的研究和应用
- 批准号:62302272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于浅水方程知识和数据融合驱动的城市内涝高效精细模拟及其可迁移性研究
- 批准号:52379010
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于多维数据特征的异构内存系统高效安全保障方法研究
- 批准号:62302182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高性能计算数据中心的高效故障诊断方法研究
- 批准号:62302244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于本征分析的数据高效学习方法研究
- 批准号:62306085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Efficient and effective methods for classifying massive time series data
海量时间序列数据高效有效的分类方法
- 批准号:
DP240100048 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Projects
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
- 批准号:
2318925 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Expanding Access to Care for Marginalized Caregivers through Innovative Methods for Multicultural and Multilingual Adaptation of AI-Based Health Technologies
通过基于人工智能的医疗技术的多文化和多语言适应创新方法,扩大边缘化护理人员获得护理的机会
- 批准号:
10741177 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Acceleration of risk gene discovery for Tic Disorders through large-scale collaboration
通过大规模合作加速抽动症风险基因的发现
- 批准号:
10726443 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别: