Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
基本信息
- 批准号:RGPIN-2018-04163
- 负责人:
- 金额:$ 4.08万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data is a valuable resource for knowledge discovery leading to effective decision making. It is collected stored and processed using variety of techniques from simple, traditional and manual to sophisticated, automated and advanced. Indeed, recent development in technology from handheld devices to sensors to surveillance to microarrays to Web 2.0 and beyond allows for electronically capturing and collecting huge volumes of data leading to big data repositories. Big data is distinguished by having large number of instances characterized by high variety and dimensionality. Such data is analogous to huge underground reserves of valuable resources. Among most popular sources of data are social networking platforms and social media portals. These sources could be watched to capture data valuable for a variety of discoveries based on interest and need, e.g., emotion detection, criminal and terror network analysis, epidemic, risk, safety and rescue, opinion, influence and economic trends, etc.Unfortunately, traditional data processing techniques are not capable of making more sense of data and hence will not be capable of producing valuable nuggets. Generally speaking, improved or new techniques could answer research questions related to foundations and applications of making sense of data by maximizing benefit from (small or big) data repositories populated from various sources, e.g., social networking platforms and social media portals. Foundation questions cover unbalanced and dynamic data with variety and high dimensionality, missing values and noise, data semantics like capturing, monitoring and analysis of behavior and trend, etc. Successfully addressing these foundation questions in this proposal, will serve applications questions that could reveal valuable discoveries related to emotions of people and how this could be linked to happiness, sadness, etc., identifying potential criminals and terrorists leading to early warning, handling risk, safety and rescue in case of disaster, watching and identifying change in opinion, influential fellows, discussions related to certain disease, its potential spread, risk, etc.To address these questions and the like, the following interrelated tasks will be completed as components of the proposed research program: data capturing and integration, incomplete/missing value discovery, scalable techniques for effective analysis of dynamic data repositories, as well as trend, influence and behavior capturing and analysis by researching innovative technologies with the aim to build an automated model capable of substituting human observer and scaling well for large and dynamic sources and networks, a scope costly if at all possible for human observers to cover at large scale in a dynamic environment. To tackle these tasks, we will develop, expand and integrate various techniques from data mining, machine learning and network analysis.
数据是知识发现的宝贵资源,有助于制定有效的决策。它的收集、存储和处理使用了各种技术,从简单的、传统的和手动的到复杂的、自动化的和先进的。事实上,从手持设备到传感器,再到监控,再到微阵列,再到Web 2.0等技术的最新发展,允许以电子方式捕获和收集海量数据,从而形成大数据仓库。大数据的特点是实例数量大,具有多样性和维度高的特点。这样的数据类似于蕴藏着大量宝贵资源的地下资源。最受欢迎的数据来源是社交网络平台和社交媒体门户网站。这些来源可以被监视以捕获对基于兴趣和需求的各种发现有价值的数据,例如,情感检测、犯罪和恐怖网络分析、流行病、风险、安全和救援、观点、影响和经济趋势等。不幸的是,传统的数据处理技术不能更好地理解数据,因此将无法产生有价值的金块。一般而言,改进的或新的技术可以通过最大化从各种来源(如社交网络平台和社交媒体门户)填充的(小的或大的)数据储存库的好处来回答与理解数据的基础和应用有关的研究问题。基础问题涵盖具有多样性和高维性的不平衡和动态数据、缺失值和噪声、数据语义(如行为和趋势的捕获、监控和分析等)。在该提案中成功解决这些基础问题将服务于应用问题,这些问题可以揭示与人们的情感相关的有价值的发现以及这如何与快乐、悲伤等相关联,识别导致早期预警的潜在罪犯和恐怖分子,在发生灾难的情况下处理风险、安全和救援,观察和识别观点的变化,有影响力的人,与某些疾病、其潜在传播、风险等相关的讨论。作为拟议研究方案的组成部分,将完成以下相互关联的任务:数据捕获和整合、不完整/缺失的价值发现、有效分析动态数据储存库的可扩展技术,以及通过研究创新技术捕获和分析趋势、影响和行为,目的是建立一个能够取代人类观察者并很好地扩展大型和动态资源和网络的自动化模型,人类观察者在动态环境中大规模覆盖的范围即使可能,也是昂贵的。为了解决这些任务,我们将开发、扩展和整合来自数据挖掘、机器学习和网络分析的各种技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alhajj, Reda其他文献
CARSVM: A class association rule-based classification framework and its application to gene expression data
- DOI:
10.1016/j.artmed.2008.05.002 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:7.5
- 作者:
Kianmehr, Keivan;Alhajj, Reda - 通讯作者:
Alhajj, Reda
Complex networks driven salient region detection based on superpixel segmentation
- DOI:
10.1016/j.patcog.2017.01.010 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:8
- 作者:
Aksac, Alper;Ozyer, Tansel;Alhajj, Reda - 通讯作者:
Alhajj, Reda
BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis
- DOI:
10.1186/s13104-019-4121-7 - 发表时间:
2019-02-12 - 期刊:
- 影响因子:1.8
- 作者:
Aksac, Alper;Demetrick, Douglas J.;Alhajj, Reda - 通讯作者:
Alhajj, Reda
Cancer class prediction: Two stage clustering approach to identify informative genes
- DOI:
10.3233/ida-2009-0386 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:1.7
- 作者:
Alshalalfah, Mohammed;Alhajj, Reda - 通讯作者:
Alhajj, Reda
Multiple sequence alignment with affine gap by using multi-objective genetic algorithm
- DOI:
10.1016/j.cmpb.2014.01.013 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:6.1
- 作者:
Kaya, Mehmet;Sarhan, Abdullah;Alhajj, Reda - 通讯作者:
Alhajj, Reda
Alhajj, Reda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alhajj, Reda', 18)}}的其他基金
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2019
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2017
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2016
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2015
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Integrating network analysis and data mining techniques into effective framework for managing charities and donors: from data repository handling to recommendations
将网络分析和数据挖掘技术集成到管理慈善机构和捐助者的有效框架中:从数据存储库处理到建议
- 批准号:
477398-2014 - 财政年份:2015
- 资助金额:
$ 4.08万 - 项目类别:
Collaborative Research and Development Grants
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2014
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Effective and Efficient Data Analysis Techniques for Emerging Data Intensive Applications
适用于新兴数据密集型应用程序的有效且高效的数据分析技术
- 批准号:
250508-2013 - 财政年份:2013
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于P-T-t-D-shear sense轨迹和数值模拟探讨羌塘中部冈玛错-拉雄错地区高压变质岩的折返机制
- 批准号:42172259
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Towards Cognizant Sensors: Making sense of data through physics
迈向认知传感器:通过物理学理解数据
- 批准号:
RGPIN-2020-06348 - 财政年份:2022
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and applications of Link Mining: Making Sense of Network Data
链接挖掘的算法和应用:理解网络数据
- 批准号:
RGPIN-2021-03380 - 财政年份:2022
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of the Data Trove Hidden in Medical Ultrasound Signals
理解隐藏在医学超声信号中的数据宝库
- 批准号:
RGPIN-2020-04612 - 财政年份:2022
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Towards Cognizant Sensors: Making sense of data through physics
迈向认知传感器:通过物理学理解数据
- 批准号:
RGPIN-2020-06348 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and applications of Link Mining: Making Sense of Network Data
链接挖掘的算法和应用:理解网络数据
- 批准号:
RGPIN-2021-03380 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of the Data Trove Hidden in Medical Ultrasound Signals
理解隐藏在医学超声信号中的数据宝库
- 批准号:
RGPIN-2020-04612 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of Data by Capturing and Analyzing Various Data Types from Different Sources for Effective Decision Making
通过捕获和分析不同来源的各种数据类型来理解数据,以做出有效的决策
- 批准号:
RGPIN-2018-04163 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Making Sense of the Data Trove Hidden in Medical Ultrasound Signals
理解隐藏在医学超声信号中的数据宝库
- 批准号:
RGPIN-2020-04612 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Towards Cognizant Sensors: Making sense of data through physics
迈向认知传感器:通过物理学理解数据
- 批准号:
RGPIN-2020-06348 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual