New Computational Methods for Quantum Dynamics of Large Systems

大型系统量子动力学的新计算方法

基本信息

  • 批准号:
    418492-2012
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Going beyond the Born-Oppenheimer approximation and classical description of the nuclear motion becomes increasingly important for advancing our understanding and ability to control photochemical processes in biological and artificial systems of technological importance. Usually, photochemistry involves more than one electronic state and the well developed apparatus of Born-Oppenheimer molecular dynamics is not applicable because the nuclear motion involves switching between multiple electronic states. In many cases, electronic degrees of freedom are not the only quantum components and neglecting zero-point motion, tunneling, quantized energy levels and coherent energy transfer can cause severe discrepancies between theory and experiment. There is an increasing number of examples where quantum effects have been observed in large biological molecules like rhodopsin and bacteriorhodopsin. To obtain deeper understanding of these observations computational input is crucial. Unfortunately, quantum mechanical laws can be practically simulated for only relatively small systems. Thus, it is paramount to extend further computational techniques that would include important quantum effects in realistic simulations. The main premise in such undertaking is that it is still possible to derive a relatively small set of collective degrees of freedom whose dynamics has highly entangled quantum character while dynamics of other degrees of freedom is simpler and can be modeled with less computationally demanding approaches. In this work we would like to formally develop these ideas in order to obtain qualitative and quantitative tools for computational modelling of quantum phenomena in various photo-active proteins.
超越Born-Oppenheimer近似和核运动的经典描述对于提高我们对生物和人工系统中具有技术重要性的光化学过程的理解和控制能力变得越来越重要。通常,光化学涉及一个以上的电子状态和玻恩-奥本海默分子动力学的发达设备是不适用的,因为核运动涉及多个电子状态之间的切换。在许多情况下,电子自由度并不是唯一的量子分量,忽略零点运动、隧穿、量子化能级和相干能量转移会导致理论和实验之间的严重差异。有越来越多的例子,量子效应已被观察到在大的生物分子,如视紫红质和细菌视紫红质。为了更深入地了解这些观测结果,计算输入至关重要。不幸的是,量子力学定律只能在相对较小的系统中进行实际模拟。因此,最重要的是扩展进一步的计算技术,包括在现实模拟中的重要量子效应。这样做的主要前提是,仍然可以导出一组相对较小的集体自由度,其动力学具有高度纠缠的量子特性,而其他自由度的动力学更简单,可以用计算要求较低的方法建模。在这项工作中,我们想正式开发这些想法,以获得定性和定量的工具,在各种光敏蛋白质的量子现象的计算建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Izmaylov, Artur其他文献

Izmaylov, Artur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Izmaylov, Artur', 18)}}的其他基金

Quantum-dynamical methods for modelling photo-induced processes in molecules
用于模拟分子中光诱导过程的量子动力学方法
  • 批准号:
    RGPIN-2018-04706
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum-dynamical methods for modelling photo-induced processes in molecules
用于模拟分子中光诱导过程的量子动力学方法
  • 批准号:
    RGPIN-2018-04706
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum computing for molecular electronic structure
分子电子结构的量子计算
  • 批准号:
    531971-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Quantum-dynamical methods for modelling photo-induced processes in molecules
用于模拟分子中光诱导过程的量子动力学方法
  • 批准号:
    RGPIN-2018-04706
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum computing for molecular electronic structure
分子电子结构的量子计算
  • 批准号:
    531971-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Quantum-dynamical methods for modelling photo-induced processes in molecules
用于模拟分子中光诱导过程的量子动力学方法
  • 批准号:
    RGPIN-2018-04706
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum-dynamical methods for modelling photo-induced processes in molecules
用于模拟分子中光诱导过程的量子动力学方法
  • 批准号:
    RGPIN-2018-04706
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum computing algorithms for accurate electronic structure calculations
用于精确电子结构计算的量子计算算法
  • 批准号:
    525596-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Engage Plus Grants Program
Adiabatic Quantum Computing of Molecular Electronic Structure on the 2000Q D-Wave Quantum Computer
2000Q D-Wave 量子计算机上分子电子结构的绝热量子计算
  • 批准号:
    516269-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Engage Grants Program
New Computational Methods for Quantum Dynamics of Large Systems
大型系统量子动力学的新计算方法
  • 批准号:
    418492-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PROTACS: new computational methods and targets
PROTACS:新的计算方法和目标
  • 批准号:
    2897704
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Studentship
Development of New Computational Methods for Phase Transition in Flow Problems With Contact Between Moving Solid Surfaces
移动固体表面接触流动问题相变新计算方法的开发
  • 批准号:
    23H00477
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
New computational methods to dynamically pinpointing the subregions carrying disease-associated rare variants
新的计算方法可动态查明携带疾病相关罕见变异的子区域
  • 批准号:
    10709565
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
Brown’s Spectral Measure: New Computational Methods from Stochastics, Partial Differential Equations, and Operator Theory
布朗谱测量:来自随机学、偏微分方程和算子理论的新计算方法
  • 批准号:
    2055340
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Developing New Computational Methods to Address the Missing Data Problem in Population Genomics
职业:开发新的计算方法来解决群体基因组学中的缺失数据问题
  • 批准号:
    2147812
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
New Methods and Tools for Computational Drug Discovery
计算药物发现的新方法和工具
  • 批准号:
    10405622
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
Protein origami: New computational methods to predict protein folding
蛋白质折纸:预测蛋白质折叠的新计算方法
  • 批准号:
    2606751
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Studentship
Designing and synthesising new classes of phosphatase inhibitor using novel computational methods
使用新颖的计算方法设计和合成新型磷酸酶抑制剂
  • 批准号:
    2627865
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了