Brown’s Spectral Measure: New Computational Methods from Stochastics, Partial Differential Equations, and Operator Theory
布朗谱测量:来自随机学、偏微分方程和算子理论的新计算方法
基本信息
- 批准号:2055340
- 负责人:
- 金额:$ 32.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The modern world is built on data, which is usually represented in rectangular arrays of numbers. Mathematicians call those tables matrices, and try to find hidden structure within them. One such hidden signature is a list of numbers called eigenvalues that describes some of the properties of the larger matrix of numbers. Eigenvalues not only summarize the information in a large array; they can reveal information that was hidden from plain view, through ubiquitous tools like principal component analysis that statisticians have used to great effect for decades. The main purpose of this proposal is to explore promising new computational tools to understand the behavior of eigenvalues of very large matrices lacking any overall symmetry. The PI and his team have discovered new and surprising connections between several different mathematical fields of study that can be used to compute the large-scale behavior of the eigenvalues of such symmetry-free matrices, opening the door to solve problems that have remained inaccessible for decades. As a new methodology, there is much to explore including low-hanging fruit that is perfectly suited to research by Ph.D. students and postdoctoral researchers. Funds will be used to develop these computational tools in collaboration with colleagues and postdoctoral researchers, and will support the research of a diverse body of Ph.D. students – both developing their research skills to prepare them for academic or technical careers, and furthering the research goals of the project.This project will address questions relating operator theory, stochastic differential equations, diffusion on Lie groups, and random matrix theory. The central theme will be to deploy a promising new set of computational tools, based on stochastic and partial differential equations, to calculate and prove regularity of spectral measures of non-normal operators in von Neumann algebras. These arise naturally as the high-dimension limits of random matrix models that appear in wireless communication and information theory, as well as throughout geometry and analysis in pure mathematics. The project concerns eleven research directions, which yield connections between these topics and applications to others. The intended research, upon completion, will settle several interesting open questions and present a major contribution to the theory, as well as provide ample opportunity for the mentoring of Ph.D. students and postdoctoral researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代世界是建立在数据之上的,数据通常用矩形数字数组来表示。数学家将这些表格称为矩阵,并试图找到其中隐藏的结构。一个这样的隐藏签名是一个称为特征值的数字列表,它描述了更大的数字矩阵的一些属性。本征值不仅将信息汇总在一个大数组中;它们还可以通过主成分分析等无处不在的工具揭示隐藏在普通视图中的信息,几十年来,主成分分析一直发挥着巨大的作用。这一建议的主要目的是探索有前景的新计算工具,以了解缺乏任何整体对称性的非常大的矩阵的特征值的行为。PI和他的团队在几个不同的数学研究领域之间发现了令人惊讶的新联系,可以用来计算这种对称自由矩阵的特征值的大规模行为,为解决几十年来一直无法解决的问题打开了大门。作为一种新的方法,有很多需要探索的地方,包括非常适合博士生和博士后研究人员研究的容易摘到的果实。资金将用于与同事和博士后研究人员合作开发这些计算工具,并将支持不同博士生的研究--既发展他们的研究技能,为他们的学术或技术职业做准备,又促进项目的研究目标。本项目将解决与算子理论、随机微分方程、李群上的扩散和随机矩阵理论相关的问题。中心主题将是部署一套有前途的新的计算工具,基于随机和偏微分方程,来计算和证明von Neumann代数中非正规算子的谱测度的正则性。这些问题自然而然地出现在无线通信和信息理论中出现的随机矩阵模型的高维极限,以及整个几何和纯数学分析中。该项目涉及11个研究方向,这些方向产生了这些主题与其他应用之间的联系。这项预期的研究完成后,将解决几个有趣的开放问题,并对该理论做出重大贡献,并为指导博士生和博士后研究人员提供充足的机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noncommutative Ck functions and Fréchet derivatives of operator functions
非交换 Ck 函数和算子函数的 Fréchet 导数
- DOI:10.1016/j.exmath.2022.12.004
- 发表时间:2023
- 期刊:
- 影响因子:0.7
- 作者:Nikitopoulos, Evangelos A.
- 通讯作者:Nikitopoulos, Evangelos A.
Ito's formula for noncommutative C2 functions of free Ito processes
自由 Ito 过程的非交换 C2 函数的 Ito 公式
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Evangelos A. Nikitopoulos
- 通讯作者:Evangelos A. Nikitopoulos
The Brown measure of the free multiplicative Brownian motion
- DOI:10.1007/s00440-022-01142-z
- 发表时间:2019-03
- 期刊:
- 影响因子:2
- 作者:B. Driver;B. Hall;Todd Kemp
- 通讯作者:B. Driver;B. Hall;Todd Kemp
Higher derivatives of operator functions in ideals of von Neumann algebras
冯诺依曼代数理想中算子函数的高阶导数
- DOI:10.1016/j.jmaa.2022.126705
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Nikitopoulos, Evangelos A.
- 通讯作者:Nikitopoulos, Evangelos A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Kemp其他文献
Strong Logarithmic Sobolev Inequalities for Log-Subharmonic Functions
对数分谐波函数的强对数 Sobolev 不等式
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
P. Graczyk;Todd Kemp;J. Loeb - 通讯作者:
J. Loeb
$${\fancyscript{R}}$$ -diagonal dilation semigroups
- DOI:
10.1007/s00209-008-0455-x - 发表时间:
2008-12-02 - 期刊:
- 影响因子:1.000
- 作者:
Todd Kemp - 通讯作者:
Todd Kemp
Hypercontractivity for log-subharmonic functions
对数分谐波函数的超收缩性
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Graczyk;Todd Kemp;J. Loeb;T. Żak - 通讯作者:
T. Żak
Heat Kernel Empirical Laws on $${\mathbb {U}}_N$$UN and $${\mathbb {GL}}_N$$GLN
$${mathbb {U}}_N$$UN 和 $${mathbb {GL}}_N$$GLN 的热核经验定律
- DOI:
10.1007/s10959-015-0643-7 - 发表时间:
2013 - 期刊:
- 影响因子:0.8
- 作者:
Todd Kemp - 通讯作者:
Todd Kemp
The Large-N Limits of Brownian Motions on N
- DOI:
10.1093/imrn/rnv245 - 发表时间:
2016 - 期刊:
- 影响因子:1
- 作者:
Todd Kemp - 通讯作者:
Todd Kemp
Todd Kemp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Kemp', 18)}}的其他基金
Conference: Southern California Probability Symposium
会议:南加州概率研讨会
- 批准号:
2318731 - 财政年份:2023
- 资助金额:
$ 32.42万 - 项目类别:
Standard Grant
Stochastic Differential Equations, Heat Kernel Analysis, and Random Matrix Theory
随机微分方程、热核分析和随机矩阵理论
- 批准号:
1800733 - 财政年份:2018
- 资助金额:
$ 32.42万 - 项目类别:
Standard Grant
CAREER: Free Probability and Connections to Random Matrices, Stochastic Analysis, and PDEs
职业:自由概率以及与随机矩阵、随机分析和偏微分方程的联系
- 批准号:
1254807 - 财政年份:2013
- 资助金额:
$ 32.42万 - 项目类别:
Continuing Grant
RANDOM MATRICES IN FUNCTIONAL ANALYSIS
泛函分析中的随机矩阵
- 批准号:
1001894 - 财政年份:2010
- 资助金额:
$ 32.42万 - 项目类别:
Standard Grant
Functional Inequalities in Global Analysis and Non-Communitative Geometry
全局分析和非交往几何中的函数不等式
- 批准号:
0701162 - 财政年份:2007
- 资助金额:
$ 32.42万 - 项目类别:
Standard Grant
相似国自然基金
一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
- 批准号:LTGY23H220001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于spectral集和spectral拓扑若干问题研究
- 批准号:11661057
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
- 批准号:11473055
- 批准年份:2014
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Continuing Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Research Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Continuing Grant
CRII: AF: Applications of Spectral Sensitivity to Query and Communication Complexity
CRII:AF:频谱敏感性在查询和通信复杂性中的应用
- 批准号:
2348489 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Standard Grant
EAGER: In-situ spectral phonon recycling in LED for improved thermal, power and performance efficiency
EAGER:LED 中的原位光谱声子回收可提高热、功率和性能效率
- 批准号:
2407260 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Standard Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
- 批准号:
2422900 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Standard Grant
Spectral Flow Cytometer
光谱流式细胞仪
- 批准号:
543853730 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Major Research Instrumentation
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
- 批准号:
EP/X042812/1 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Fellowship
Spectral theory of relativistic quantum Hamiltonians
相对论量子哈密顿量的谱论
- 批准号:
2903825 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Studentship
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 32.42万 - 项目类别:
Continuing Grant