Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
基本信息
- 批准号:435780-2013
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As computational power increases and storage becomes cheaper, 'big-data' - a term used to refer to huge quantities of acquired or simulated data - is becoming more and more pervasive. A lot of research effort nowadays is focused towards efficiently managing and analyzing big-data. This research program, on the other hand, aims at cutting down the amount of data by devising more informative acquisition and processing tools. The particular focus is the visualization and simulation of flow data that arises in disciplines such as computer graphics, climatology, automotive design and petroleum engineering, where the fluid flow is usually described by a discrete unsteady three-dimensional velocity field: a finite set of time-varying velocity vectors strategically distributed throughout the simulation domain. A fundamental task in flow visualization is the approximation of a continuous flow field from the finite set of velocity vectors. The usual practice in the community is to interpolate each velocity component independently. This straightforward approach is preferred since it gives the practitioner access to various optimized interpolation routines. However, it has its drawbacks since it does not take into account the fact that many flow fields encountered in practice are incompressible, i.e. the fluid density does not change as the fluid flows through the domain.
随着计算能力的提高和存储变得越来越便宜,“大数据”(一个用于指代大量获取或模拟数据的术语)变得越来越普遍。如今,许多研究工作都集中在有效管理和分析大数据上。另一方面,该研究计划旨在通过设计更多信息获取和处理工具来减少数据量。特别关注的是计算机图形学、气候学、汽车设计和石油工程等学科中出现的流动数据的可视化和模拟,其中流体流动通常由离散的非稳态三维速度场来描述:策略性地分布在整个模拟域中的一组有限的时变速度向量。流可视化的一项基本任务是从有限的速度矢量集近似连续流场。社区中的通常做法是独立插值每个速度分量。这种简单的方法是首选,因为它使从业者可以访问各种优化的插值例程。然而,它也有其缺点,因为它没有考虑到实际中遇到的许多流场是不可压缩的这一事实,即流体密度不会随着流体流过域而改变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alim, Usman其他文献
Alim, Usman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alim, Usman', 18)}}的其他基金
Toward Scalable Non-Cartesian Computing
迈向可扩展的非笛卡尔计算
- 批准号:
RGPIN-2019-05303 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Toward Scalable Non-Cartesian Computing
迈向可扩展的非笛卡尔计算
- 批准号:
RGPIN-2019-05303 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Toward Scalable Non-Cartesian Computing
迈向可扩展的非笛卡尔计算
- 批准号:
RGPIN-2019-05303 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Toward Scalable Non-Cartesian Computing
迈向可扩展的非笛卡尔计算
- 批准号:
RGPIN-2019-05303 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
- 批准号:
2012031 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Advancements in Divergence-Free Approximations for Incompressible Flow
不可压缩流动的无散近似的进展
- 批准号:
2011733 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Finite Element Methods for Incompressible Flow Yielding Divergence-Free Approximations
不可压缩流产生无散近似的有限元方法
- 批准号:
1719829 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Development of a high-order divergence-free shock capturing scheme for plasma fluid equations
等离子体流体方程高阶无发散冲击捕获方案的开发
- 批准号:
15K04756 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approximation of Divergence-free Vector Fields on Regular Lattices
正则格子上无散向量场的近似
- 批准号:
435780-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Orthonormal divergence-free wavelet analysis of magnetic fieldgeneration mechanism in magnetohydrodynamic turbulence
磁流体动力湍流磁场产生机制的正交无散度小波分析
- 批准号:
22540509 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)