Finite Element Methods for Incompressible Flow Yielding Divergence-Free Approximations
不可压缩流产生无散近似的有限元方法
基本信息
- 批准号:1719829
- 负责人:
- 金额:$ 15.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to develop practical, structure-preserving computational methods to simulate incompressible flow. Systems with incompressible flow are ubiquitous in computational fluid dynamics (CFD) and arise in several engineering and biological models such as those used in aircraft design, weather prediction, and lipid membrane modeling. The main focus of the project is to identify compatible computational methods that inherit at the discrete level the intrinsic structure and invariants of the systems under study. Such discretizations produce numerical schemes with enhanced stability and conservation properties, resulting in physically relevant and accurate approximations. It is anticipated that the results of the project will directly benefit researchers and practitioners in CFD and be useful in applications that require faithful approximations. In addition to the construction of these numerical schemes and algorithms, the project will analyze the stability and convergence of the methods; the theoretical analysis will provide insight for future development of numerical schemes with improved efficiency, accuracy, and fidelity.The project is centered on developing finite element methods for the incompressible Stokes and Navier-Stokes equations that enforce the divergence-free constraint exactly. Such schemes have several desirable properties, including improved error estimates, enhanced long-time stability and accuracy of time-stepping schemes, explicit characterizations and local bases of divergence-free subspaces, and coupled-method accuracy when combined with projection methods. Specific objectives of this project include (i) developing stable finite element pairs for Navier-Stokes equations in three dimensions that strongly enforce exact conservation of mass; (ii) applying simplicial Bernstein-Bezier theory, a powerful analytical tool for polynomial splines, to the mixed finite element framework; (iii) constructing robust and computationally attractive methods for axisymmetric fluid models; and (iv) developing stable mixed finite element pairs on surfaces by incorporating fluid flow models in a finite element exterior calculus framework.
该研究项目旨在开发实用的、结构保持的计算方法来模拟不可压缩流。 具有不可压缩流的系统在计算流体动力学(CFD)中是普遍存在的,并且出现在若干工程和生物模型中,例如用于飞机设计、天气预测和脂质膜建模的那些。 该项目的主要重点是确定兼容的计算方法,继承在离散水平的内在结构和不变量的系统研究。 这种离散化产生具有增强的稳定性和守恒性质的数值方案,从而产生物理相关且准确的近似。预计该项目的结果将直接使CFD的研究人员和从业人员受益,并在需要忠实近似的应用中非常有用。 除了这些数值格式和算法的构建,该项目还将分析方法的稳定性和收敛性,理论分析将为未来开发具有更高效率、精度和保真度的数值格式提供见解。该项目的核心是开发精确执行无发散约束的不可压缩Stokes和Navier-Stokes方程的有限元方法。 这种方案有几个理想的属性,包括改进的误差估计,增强的长期稳定性和精度的时间步进计划,明确的特征和本地基地的发散自由子空间,耦合方法的精度与投影方法相结合。该项目的具体目标包括:㈠为三维Navier-Stokes方程建立稳定的有限元对,以严格执行精确的质量守恒; ㈡将单纯Bernstein-Bezier理论(多项式样条的一种强有力的分析工具)应用于混合有限元框架; ㈢为轴对称流体模型建立稳健的、在计算上有吸引力的方法;以及(iv)通过将流体流动模型并入有限元外部微积分框架中来在表面上开发稳定的混合有限元对。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-Problem
- DOI:10.1090/mcom/3344
- 发表时间:2017-02
- 期刊:
- 影响因子:0
- 作者:A. Linke;C. Merdon;M. Neilan;Felix Neumann
- 通讯作者:A. Linke;C. Merdon;M. Neilan;Felix Neumann
Low-order Raviart–Thomas approximations of axisymmetric Darcy flow
轴对称达西流的低阶 Raviart–Thomas 近似
- DOI:10.1016/j.jmaa.2018.12.078
- 发表时间:2019
- 期刊:
- 影响因子:1.3
- 作者:Neilan, Michael;Zytoon, Ahmed
- 通讯作者:Zytoon, Ahmed
Rates of Convergence in $W^2_p$-Norm for the Monge--Ampère Equation
蒙日-安培方程 $W^2_p$-范数的收敛率
- DOI:10.1137/17m1160409
- 发表时间:2018
- 期刊:
- 影响因子:2.9
- 作者:Neilan, Michael;Zhang, Wujun
- 通讯作者:Zhang, Wujun
Exact sequences on Powell–Sabin splits
鲍威尔与萨宾分裂的精确序列
- DOI:10.1007/s10092-020-00361-x
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Guzmán, J.;Lischke, A.;Neilan, M.
- 通讯作者:Neilan, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Neilan其他文献
A $$C^0$$ interior penalty method for a von Kármán plate
- DOI:
10.1007/s00211-016-0817-y - 发表时间:
2016-07-12 - 期刊:
- 影响因子:2.200
- 作者:
Susanne C. Brenner;Michael Neilan;Armin Reiser;Li-Yeng Sung - 通讯作者:
Li-Yeng Sung
A General Degree Divergence-Free Finite Element Method for the Two-Dimensional Stokes Problem on Smooth Domains
- DOI:
10.1007/s10915-024-02674-3 - 发表时间:
2024-09-23 - 期刊:
- 影响因子:3.300
- 作者:
Rebecca Durst;Michael Neilan - 通讯作者:
Michael Neilan
Michael Neilan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Neilan', 18)}}的其他基金
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Advancements in Divergence-Free Approximations for Incompressible Flow
不可压缩流动的无散近似的进展
- 批准号:
2011733 - 财政年份:2020
- 资助金额:
$ 15.75万 - 项目类别:
Continuing Grant
Structure-Preserving Discretizations: Finite Elements, Splines, and Isogeometric Analysis
结构保持离散化:有限元、样条曲线和等几何分析
- 批准号:
1914795 - 财政年份:2019
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Nonlinear PDE's, Numerical Analysis, and Applications; October 2-3, 2015; Pittsburgh, PA
非线性偏微分方程、数值分析和应用;
- 批准号:
1541585 - 财政年份:2015
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Finite element methods for non-divergence form partial differential equations and the Hamilton-Jacobi-Bellman equation
非散度形式偏微分方程和 Hamilton-Jacobi-Bellman 方程的有限元方法
- 批准号:
1417980 - 财政年份:2014
- 资助金额:
$ 15.75万 - 项目类别:
Continuing Grant
Novel Discretization Schemes for Fully Nonlinear Partial Differential Equations
全非线性偏微分方程的新颖离散化方案
- 批准号:
1238711 - 财政年份:2011
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Novel Discretization Schemes for Fully Nonlinear Partial Differential Equations
全非线性偏微分方程的新颖离散化方案
- 批准号:
1115421 - 财政年份:2011
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
相似国自然基金
毛竹MLE(mariner-like element)转座酶催化机理研究
- 批准号:LZ19C160001
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 15.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Finite element methods for Boltzmann neutron transport equation on polygonal and polyhedral meshes
多边形和多面体网格上玻尔兹曼中子输运方程的有限元方法
- 批准号:
2887026 - 财政年份:2023
- 资助金额:
$ 15.75万 - 项目类别:
Studentship
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Structure-Preserving Hybrid Finite Element Methods
保结构混合有限元方法
- 批准号:
2208551 - 财政年份:2022
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208402 - 财政年份:2022
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208426 - 财政年份:2022
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
- 批准号:
RGPIN-2017-04581 - 财政年份:2022
- 资助金额:
$ 15.75万 - 项目类别:
Discovery Grants Program - Individual