Models to determine the process parameters required to sculpt desired micro-feature topographies on flat and curved surfaces using abrasive jet technology
用于确定使用磨料喷射技术在平面和曲面上雕刻所需微特征形貌所需的工艺参数的模型
基本信息
- 批准号:RGPIN-2014-03895
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Jets of small abrasive particles propelled by air or water have been used for many years to modify the topography of engineered surfaces. One of the most important applications of abrasive jet technology (AJT) is as a low cost and rapid micro-fabrication platform for microfluidics, micro-electomechanical systems (MEMS), and opto electronics components. The proposed research will focus on two AJT's for this purpose: air driven abrasive jet micro-machining (AJM) and abrasive waterjet micro-machining (AWJM). The advantages of these technologies are many, but perhaps the most important are that they can machine without creating a heat affected zone, and that they have a unique directional etch capability that most competing technologies do not. For example, traditional isotropic wet etching of channels results in a single basic U-shaped micro-channel cross-section. The directional etch capability of AJT, however, allows the sculpting of many different shapes by changing the process parameters (e.g. jet scan speed and inclination angle, particle size, etc). The proposed research will exploit this unique capability, allowing the technology to be used in the manufacture of novel devices.
We have previously developed "surface evolution" models for the AJM of a wide variety of materials that can predict the development of machined topography on an initially flat surface for various combinations of process parameters. The next generation of microfluidic and MEMS devices, however, will require micro-machining 3D (i.e. non-planar) components, an area that has not yet been explored for AJM, despite its great potential. Similarly, there is currently no surface evolution model to predict machined topography using AWJM, a newer process that is fundamentally different than AJM because of abrasive slurry backflow effects and the lack of a mask. Through an exclusive agreement with an industrial partner, we have an AWJM setup with a unique micro-nozzle that will allow us to do ground-breaking research in this area. A complicating factor for AJT is the tendency for particles to embed into the surface and thus affect the surface quality, erosion rate, roughness, etc. Currently, no model exists for predicting what particle and process parameters control the extent of this embedding when machining metals using AJT. The initial portion of the proposed research will focus on addressing these important shortcomings in the modeling of AJT processes.
Surface evolution models are important because they can predict machined topography as a function of input process parameters; however, there are currently no techniques to solve the inverse problem, i.e. predicting the process parameters necessary for sculpting particular desired topographies. The final portion of the proposed research will tackle this important problem that would allow the sculpting of particular desired feature shapes using AJT. In other words, we will develop methodologies that allow the inputs (the process parameters) to the surface evolution equation to be determined from a desired solution of the equation at some future time (the desired cross sectional profile). The problem is challenging because the surface evolution partial differential equation is nonlinear and cannot be solved in closed form. Initially, optimization routines will be used to determine the set of parameters that comes closest to a desired topography. Later, novel techniques for sculpting surfaces of desired shapes using combinations of inclined and perpendicular incidence nozzles will developed. These techniques will open up a host of new device design opportunities for the design of 3D MEMS and microfluidics devices, and thus support Canada's growing micro-technology sector.
由空气或水推动的小磨料颗粒的射流已经被用于改变工程表面的形貌多年。磨料射流技术(AJT)的最重要应用之一是作为微流体、微机电系统(MEMS)和光电子元件的低成本和快速微制造平台。拟议的研究将集中在两个AJT的为此目的:空气驱动磨料射流微加工(AJM)和磨料水射流微加工(AWJM)。这些技术的优点很多,但也许最重要的是它们可以在不产生热影响区的情况下进行加工,并且它们具有大多数竞争技术所没有的独特的定向蚀刻能力。例如,通道的传统各向同性湿法蚀刻导致单个基本U形微通道横截面。然而,AJT的定向蚀刻能力允许通过改变工艺参数(例如,喷射扫描速度和倾斜角度、颗粒尺寸等)来雕刻许多不同的形状。拟议的研究将利用这种独特的能力,使该技术用于制造新设备。
我们以前已经开发了各种材料的AJM的“表面演变”模型,可以预测加工形貌的发展,在一个最初的平面上的各种组合的工艺参数。然而,下一代微流体和MEMS器件将需要微加工3D(即非平面)组件,这是AJM尚未探索的领域,尽管它具有巨大的潜力。类似地,目前没有表面演变模型来预测使用AWJM的机加工形貌,AWJM是一种较新的工艺,由于磨料浆回流效应和缺乏掩模而与AJM有根本不同。通过与工业合作伙伴的独家协议,我们拥有一个带有独特微型喷嘴的AWJM装置,这将使我们能够在这一领域进行突破性的研究。AJT的一个复杂因素是颗粒嵌入到表面的趋势,从而影响表面质量,侵蚀率,粗糙度等,目前,没有模型存在预测什么颗粒和工艺参数控制的程度,这种嵌入使用AJT加工金属时。拟议的研究的初始部分将集中在解决这些重要的缺点,AJT过程的建模。
表面演变模型是重要的,因为它们可以预测加工地形作为输入工艺参数的函数,然而,目前没有技术来解决逆问题,即预测雕刻特定期望的地形所需的工艺参数。拟议的研究的最后一部分将解决这个重要的问题,这将允许使用AJT雕刻特定的所需的功能形状。换句话说,我们将开发的方法,允许输入(工艺参数)的表面演化方程,以确定在未来的某个时间(所需的横截面轮廓)的方程的一个理想的解决方案。由于表面演化偏微分方程是非线性的,不能用封闭形式求解,因此该问题具有挑战性。最初,将使用优化例程来确定最接近所需形貌的参数集。后来,新的技术雕刻所需形状的表面使用倾斜和垂直入射喷嘴的组合将开发。这些技术将为3D MEMS和微流体设备的设计开辟一系列新的设备设计机会,从而支持加拿大不断增长的微技术部门。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Papini, Marcello其他文献
Inertial particle separation in helical channels: A calibrated numerical analysis
- DOI:
10.1063/5.0030930 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:1.6
- 作者:
Palumbo, Joshua;Navi, Maryam;Papini, Marcello - 通讯作者:
Papini, Marcello
Cortical screw pullout strength and effective shear stress in synthetic third generation composite femurs
- DOI:
10.1115/1.2540926 - 发表时间:
2007-04-01 - 期刊:
- 影响因子:1.7
- 作者:
Zdero, Radovan;Rose, Shaun;Papini, Marcello - 通讯作者:
Papini, Marcello
Controlled depth micro-abrasive waterjet milling of aluminum oxide to fabricate micro-molds containing intersecting free-standing structures
- DOI:
10.1016/j.precisioneng.2022.01.007 - 发表时间:
2022-01-29 - 期刊:
- 影响因子:3.6
- 作者:
Ibrahim, Amro;Papini, Marcello - 通讯作者:
Papini, Marcello
Measurement of Adhesion of Sternal Wires to a Novel Bioactive Glass-Based Adhesive
- DOI:
10.3390/jfb10030037 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:4.8
- 作者:
Sidhu, Varinder Pal Singh;Towler, Mark R.;Papini, Marcello - 通讯作者:
Papini, Marcello
Abrasive water and slurry jet micro-machining techniques for fabrication of molds containing raised free-standing micro-features
- DOI:
10.1016/j.precisioneng.2020.05.009 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:3.6
- 作者:
Azarsa, Ehsan;Ibrahim, Amro;Papini, Marcello - 通讯作者:
Papini, Marcello
Papini, Marcello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Papini, Marcello', 18)}}的其他基金
Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
- 批准号:
RGPIN-2019-04633 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
- 批准号:
RGPIN-2019-04633 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
- 批准号:
RGPIN-2019-04633 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Modeling and validation of constructive and destructive solid particle erosion processes
建设性和破坏性固体颗粒侵蚀过程的建模和验证
- 批准号:
RGPIN-2019-04633 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Models to determine the process parameters required to sculpt desired micro-feature topographies on flat and curved surfaces using abrasive jet technology
用于确定使用磨料喷射技术在平面和曲面上雕刻所需微特征形貌所需的工艺参数的模型
- 批准号:
RGPIN-2014-03895 - 财政年份:2018
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
A confocal, interferometry, and focus variation based three dimensional profilometer
基于共焦、干涉测量和焦点变化的三维轮廓仪
- 批准号:
RTI-2019-00564 - 财政年份:2018
- 资助金额:
$ 4.23万 - 项目类别:
Research Tools and Instruments
Models to determine the process parameters required to sculpt desired micro-feature topographies on flat and curved surfaces using abrasive jet technology
用于确定使用磨料喷射技术在平面和曲面上雕刻所需微特征形貌所需的工艺参数的模型
- 批准号:
RGPIN-2014-03895 - 财政年份:2017
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Solid particle erosion mechanisms in ceramic and polymer filled epoxy coatings for flue gas ducting and cyclone applications
用于烟气管道和旋风分离器应用的陶瓷和聚合物填充环氧涂层中的固体颗粒侵蚀机制
- 批准号:
494082-2016 - 财政年份:2016
- 资助金额:
$ 4.23万 - 项目类别:
Engage Grants Program
相似海外基金
Synthesizing hydrologic process knowledge to determine global drivers of dominant processes
综合水文过程知识以确定主导过程的全球驱动因素
- 批准号:
2322510 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Leveraging a Natural Experiment to Determine the Effects of Integrated Palliative Care on Health Service Outcomes and Disparities in Parkinson Disease and Lewy Body Dementia
利用自然实验确定综合姑息治疗对帕金森病和路易体痴呆的卫生服务结果和差异的影响
- 批准号:
10701322 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Comparative toxicogenomics to determine conserved genetic and environmental interactions in craniofacial birth defects
比较毒物基因组学以确定颅面出生缺陷中保守的遗传和环境相互作用
- 批准号:
10664324 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
A New Genetic Expression System to Determine the Odor Tuning of Insect Vector Ionotropic Receptors Sensitive to Human-Derived Odorants
一种新的基因表达系统,用于确定对人类来源的气味敏感的昆虫载体离子型受体的气味调节
- 批准号:
10726203 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Determine the neurotoxicity of RNA metabolism dysfunction caused by cytoplasmic TDP-43 aggregates
确定细胞质 TDP-43 聚集体引起的 RNA 代谢功能障碍的神经毒性
- 批准号:
10730167 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Single-Cell RNA Sequencing of Cardiac Organoids to Determine the Genetic Basis for Cell-Specific Responses to Anticancer Drugs
心脏类器官的单细胞 RNA 测序以确定抗癌药物细胞特异性反应的遗传基础
- 批准号:
10679493 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Computationally Guided Approach to Produce Ratiometric Probes Operating in the Red to Near-infrared Region to Accurately Determine pH Levels within Organelles
计算引导方法生产在红色至近红外区域运行的比率探针,以准确确定细胞器内的 pH 水平
- 批准号:
10796036 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Tools to determine and analyze the structures of molecular machines in motion
确定和分析运动中分子机器结构的工具
- 批准号:
10345392 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Defining the Mechanism of Genome Rearrangements in Ph-Like ALL to Determine Predictive Markers in High-Risk Hispanic Populations
定义 Ph 样 ALL 基因组重排机制以确定高危西班牙裔人群的预测标记
- 批准号:
10347835 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
A clear view of encephalitis: a single cell approach to determine the basis of flaviviral pathogenesis in the central nervous system
脑炎的清晰认识:用单细胞方法确定中枢神经系统黄病毒发病机制的基础
- 批准号:
10553697 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别: