Methods to improve the reliability of biomechanical gait kinematic data.

提高生物力学步态运动学数据可靠性的方法。

基本信息

  • 批准号:
    RGPIN-2014-04079
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Summary of Proposal (3800 characters) Biomechanical gait analysis is one of the most ubiquitous research methods for analysing sport performance or evaluating pathologic gait. However, a significant limitation with biomechanical gait research is that most laboratories function in isolation and thereby collect data on a small number of subjects. For the past 4 years, we have developed a worldwide network of 30 research and clinic partners all linked to a common research database: FeBE (Fetch By Email). The overarching purpose is to create an open-source 3D biomechanical database and allow researchers access to the data for the purpose of hypothesis-driven research. Thus, it is imperative we ensure the data are reliable and valid across the contributing sites. The most commonly recognized problem is the day-to-day variability that may be present due to placement of retro-reflective markers over the skin on specific anatomical landmarks. This variability is especially important when the same subject is being tested on more than one occasion or when different people collect data from multiple sites. While the results of our previous research provided increased confidence in the data being added to FeBE, we continued to develop novel methods to screen and improve data reliability. Considering that a large portion of the data in FeBE had been collected by one individual, with 15 years of experience in clinical anatomy and over 500 gait analyses, this database, in our opinion, constitutes a critical resource that makes an in-depth study of marker placement error feasible. We proceeded to use these reference data (n=400) as a means to develop a standard anatomical model involving a unique integration of two seemingly disparate NSE disciplines: morphometrics and biomechanics. Most importantly, this model provided the tools needed to quantitatively detect marker placement errors. Therefore, this NSERC Discovery Grant proposal will build on our past research and continue to develop novel methods to improve the reliability and validity of kinematic gait data and train future biomechanists and gait analysis experts. The long-term objective of my research program is to create tools to support interdisciplinary multi-centre biomechanical investigations. The short-term objective of this proposal is to ensure that data are accurate, reliable, and repeatable by developing novel statistical methods for data screening and kinematic variable selection as well as robust training methods and software tools for biomechanists. We propose to focus on four Specific Aims: Aim 1 is focused on developing original and innovative statistical methods to improve kinematic data collection accuracy, reliability, and repeatability. Aims 2, 3, and 4 focus on novel research questions to improve marker placement accuracy along with novel training methods. Reliability of gait biomechanical data is an important topic within NSE research considering that NSERC strives to “facilitate the pooling of knowledge, resources and expertise” as well as “foster global research platforms and promote the internationalization of research and training.” To our knowledge, the development of FeBE and our overarching approach is completely novel and speaks directly to achieving these objectives and priorities. This proposed research will improve the quality of data collected in our lab, as well as gait labs around the world. By ensuring that data are accurate and repeatable, and through the development of novel statistical methods for data screening, we will ensure that biomechanical researchers have access to the best tools. These tools will ultimately improve our progress in using 3D gait biomechanics for research purposes.
提案摘要(3800字) 生物力学步态分析是分析运动成绩或评估病理步态的最普遍的研究方法之一。然而,生物力学步态研究的一个重要局限性是,大多数实验室都是孤立运作的,因此只收集少数受试者的数据。在过去的4年里,我们已经建立了一个由30个研究和临床合作伙伴组成的全球网络,所有这些合作伙伴都连接到一个共同的研究数据库:FeBE(通过电子邮件获取)。总体目的是创建一个开源的3D生物力学数据库,并允许研究人员访问数据,以进行假设驱动的研究。因此,我们必须确保数据在贡献站点之间是可靠和有效的。 最常见的问题是由于在皮肤上特定解剖标志上放置回射标记而可能存在的日常变化。当同一受试者在多个场合进行测试或不同的人从多个站点收集数据时,这种可变性尤其重要。虽然我们之前的研究结果为添加到FeBE中的数据提供了更大的信心,但我们继续开发新的方法来筛选和提高数据可靠性。 考虑到FeBE中的大部分数据是由一个人收集的,具有15年的临床解剖学经验和500多次步态分析,我们认为该数据库构成了一个关键资源,可以对标记放置错误进行深入研究。我们继续使用这些参考数据(n=400)作为一种手段,开发一个标准的解剖模型,涉及两个看似不同的NSE学科的独特整合:形态测量学和生物力学。最重要的是,该模型提供了定量检测标记放置错误所需的工具。因此,这项NSERC发现资助计划将建立在我们过去的研究基础上,继续开发新的方法来提高运动步态数据的可靠性和有效性,并培养未来的生物力学家和步态分析专家。 我的研究计划的长期目标是创建工具,以支持跨学科的多中心生物力学研究。该提案的短期目标是通过开发用于数据筛选和运动学变量选择的新统计方法以及生物力学家的强大培训方法和软件工具,确保数据准确,可靠和可重复。我们建议专注于四个具体目标:目标1专注于开发原创和创新的统计方法,以提高运动学数据收集的准确性,可靠性和可重复性。目标2、3和4关注新的研究问题,以沿着新的训练方法来提高标记放置的准确性。 步态生物力学数据的可靠性是NSE研究中的一个重要课题,因为NSERC致力于“促进知识,资源和专业知识的汇集”以及“培育全球研究平台,促进研究和培训的国际化”。据我们所知,FeBE的发展和我们的总体方法是完全新颖的,直接关系到实现这些目标和优先事项。这项拟议的研究将提高我们实验室以及世界各地步态实验室收集的数据质量。通过确保数据的准确性和可重复性,并通过开发新的数据筛选统计方法,我们将确保生物力学研究人员能够获得最好的工具。这些工具将最终提高我们在使用3D步态生物力学进行研究方面的进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ferber, Reed其他文献

Use of subject-specific models to detect fatigue-related changes in running biomechanics: a random forest approach.
  • DOI:
    10.3389/fspor.2023.1283316
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Dimmick, Hannah L.;van Rassel, Cody R.;Macinnis, Martin J.;Ferber, Reed
  • 通讯作者:
    Ferber, Reed
Support vector machines for detecting age-related changes in running kinematics
  • DOI:
    10.1016/j.jbiomech.2010.09.031
  • 发表时间:
    2011-02-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fukuchi, Reginaldo K.;Eskofier, Bjoern M.;Ferber, Reed
  • 通讯作者:
    Ferber, Reed
Changes in multi-segment foot biomechanics with a heat-mouldable semi-custom foot orthotic device
  • DOI:
    10.1186/1757-1146-4-18
  • 发表时间:
    2011-06-21
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ferber, Reed;Benson, Brittany
  • 通讯作者:
    Benson, Brittany
Strengthening of the Hip and Core Versus Knee Muscles for the Treatment of Patellofemoral Pain: A Multicenter Randomized Controlled Trial
  • DOI:
    10.4085/1062-6050-49.3.70
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ferber, Reed;Bolgla, Lori;Hamstra-Wright, Karrie
  • 通讯作者:
    Hamstra-Wright, Karrie
Kinematic and Coordination Variability in Individuals With Acute and Chronic Patellofemoral Pain
  • DOI:
    10.1123/jab.2020-0401
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Fox, Aaron S.;Ferber, Reed;Bonacci, Jason
  • 通讯作者:
    Bonacci, Jason

Ferber, Reed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ferber, Reed', 18)}}的其他基金

Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE for the Wearable Technology Research and Collaboration (We-TRAC) training program
NSERC CREATE 可穿戴技术研究与合作 (We-TRAC) 培训计划
  • 批准号:
    511166-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Training Experience
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE for the Wearable Technology Research and Collaboration (We-TRAC) training program
NSERC CREATE 可穿戴技术研究与合作 (We-TRAC) 培训计划
  • 批准号:
    511166-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Training Experience
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE for the Wearable Technology Research and Collaboration (We-TRAC) training program
NSERC CREATE 可穿戴技术研究与合作 (We-TRAC) 培训计划
  • 批准号:
    511166-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Training Experience
Building predictive models of joint loading using integrated motion capture and inertial measurement technologies.
使用集成运动捕捉和惯性测量技术构建关节载荷的预测模型。
  • 批准号:
    RTI-2019-00169
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Research Tools and Instruments
NSERC CREATE for the Wearable Technology Research and Collaboration (We-TRAC) training program
NSERC CREATE 可穿戴技术研究与合作 (We-TRAC) 培训计划
  • 批准号:
    511166-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Training Experience
Methods to improve the reliability of biomechanical gait kinematic data.
提高生物力学步态运动学数据可靠性的方法。
  • 批准号:
    RGPIN-2014-04079
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10364433
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10542758
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the reliability of biomechanical gait kinematic data.
提高生物力学步态运动学数据可靠性的方法。
  • 批准号:
    RGPIN-2014-04079
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the reliability of biomechanical gait kinematic data.
提高生物力学步态运动学数据可靠性的方法。
  • 批准号:
    RGPIN-2014-04079
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the reliability of biomechanical gait kinematic data.
提高生物力学步态运动学数据可靠性的方法。
  • 批准号:
    462051-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Methods to improve the reliability of biomechanical gait kinematic data.
提高生物力学步态运动学数据可靠性的方法。
  • 批准号:
    462051-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了