Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
基本信息
- 批准号:10364433
- 负责人:
- 金额:$ 71.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmerican College of SurgeonsAutomationAwarenessCardiacCardiac Surgery proceduresCaringClinicalCollectionDataData AnalysesData AnalyticsData CollectionData ElementData ScienceDatabasesElectronic Health RecordEvaluationExcess MortalityFeedbackFutureGoalsGoldHandHospitalsIndustryInfrastructureInstitutionInterviewLinkManualsMeasurementMethodologyMethodsModelingModernizationModificationNational Heart, Lung, and Blood InstituteNatural Language ProcessingObservational StudyOperative Surgical ProceduresOutcomePatientsPerformancePerioperative CarePrivate SectorProcessQualitative MethodsRegistriesReportingResearchResearch PersonnelResearch PriorityResourcesRiskSafetySocietiesStatistical ComputingStructureSumThoracic SurgeonTimeUnited States Department of Veterans AffairsUpdateWorkadvanced analyticsbasedata warehouseexperiencehospital performanceimplementation strategyimprovedinnovationinterestmortalitynovelprogramsresponse
项目摘要
Within existing national surgical quality improvement (QI) programs, there are numerous opportunities to
improve the efficiency of data flow from the point of collection to the time at which performance-based
feedback is provided to stakeholders. Current limitations of the QI data cycle include: (a) reliance on hand
abstraction for data collection; (b) a retrospective and episodic (e.g.: quarterly, bi-annually, etc.) approach to
analysis and feedback which creates a time lag from when the hospital’s performance is declining and when it is
made aware; (c) small clusters of clinically meaningful poor performance may go of undetected using current
episodic analytic structures. To address the first limitation, modern data science methods (MDSMs) could be
used to automate the collection of some, or all, of the variables within surgical QI registries. Full or partial
automation of data collection could allow the substantial resources currently committed to manual data
abstraction to be repurposed to support more continuous, proactive engagement in local QI activities. To
address the limitations associated with episodic performance evaluation, alternative approaches for analyzing
data in more real-time could be applied to provide an early warning of declining performance. The Veterans
Affairs (VA) Surgical Quality Improvement Program (VASQIP) is one of the most successful and longest-
standing national clinical registries used for surgical QI and has been the template for a number of similar
programs in the private sector. As such, VASQIP represents an excellent model for evaluating alternative
approaches to data collection and analysis that could allow for more efficient data flow through the quality
improvement cycle and enhance national surgical QI efforts. The overall goal of this proposal is to evaluate
alternative, potentially more efficient strategies that can be readily implemented within the existing
infrastructure of contemporary surgical QI programs and aid in the more efficient flow of data. The specific
aims are to: (1) develop and validate MDSMs to use structured and unstructured electronic health record data
to automate cardiac VASQIP data collection; (2) compare the risk-adjusted CUSUM (a statistical process
control methodology borrowed from industry) to quarterly observed-to-expected ratios (i.e.: VASQIP’s current
approach to assessing performance) for evaluating VA hospital cardiac surgical performance; (3) conduct semi-
structured interviews with diverse stakeholder groups to set a national research agenda for expansion and
improvement of surgical QI programs. This mixed-methods proposal will involve observational studies using
VASQIP and VA Corporate Data Warehouse data for patients who underwent cardiac surgery at a VA hospital
between 2016 and 2020 as well as qualitative interviews with stakeholders who can help to inform future
changes that can improve the data available within VASQIP. This project is important and novel because it will
provide real-world, generalizable data that can be used to inform national surgical and non-surgical QI
initiatives within VA and the private sector.
在现有的国家手术质量改进(QI)计划中,有很多机会
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nader Nabile Massarweh其他文献
Examining Care Fragmentation After PAD Interventions: The Readmission Event
- DOI:
10.1016/j.jvs.2022.11.019 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Olamide Alabi;Nader Nabile Massarweh;Xinyan Zheng;Jialin Mao;Yazan Duwayri - 通讯作者:
Yazan Duwayri
Nader Nabile Massarweh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nader Nabile Massarweh', 18)}}的其他基金
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
- 批准号:
10542758 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
- 批准号:
10641658 - 财政年份:2021
- 资助金额:
$ 71.92万 - 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
- 批准号:
10334529 - 财政年份:2021
- 资助金额:
$ 71.92万 - 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
- 批准号:
10187843 - 财政年份:2021
- 资助金额:
$ 71.92万 - 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
- 批准号:
10547734 - 财政年份:2021
- 资助金额:
$ 71.92万 - 项目类别:
Comparative Effectiveness of Alternative Strategies for Monitoring Hospital Surgical Performance
监测医院手术表现的替代策略的比较有效性
- 批准号:
10186540 - 财政年份:2018
- 资助金额:
$ 71.92万 - 项目类别:
Comparative Effectiveness of Alternative Strategies for Monitoring Hospital Surgical Performance
监测医院手术表现的替代策略的比较有效性
- 批准号:
9692259 - 财政年份:2018
- 资助金额:
$ 71.92万 - 项目类别:
Comparative effectiveness of real-time and episodic hospital surgical performance evaluation
实时与间歇式医院手术绩效评估的效果比较
- 批准号:
9370221 - 财政年份:2017
- 资助金额:
$ 71.92万 - 项目类别:
A Population-Based Analysis of Care and Outcomes for Hepatocellular Carcinoma
基于人群的肝细胞癌护理和结果分析
- 批准号:
7541665 - 财政年份:2008
- 资助金额:
$ 71.92万 - 项目类别:
A Population-Based Analysis of Care and Outcomes for Hepatocellular Carcinoma
基于人群的肝细胞癌护理和结果分析
- 批准号:
7812042 - 财政年份:2008
- 资助金额:
$ 71.92万 - 项目类别:
相似海外基金
AMERICAN COLLEGE OF SURGEONS ONCOLOGY TRIALS GROUP
美国外科医生学院肿瘤学试验组
- 批准号:
2441711 - 财政年份:1998
- 资助金额:
$ 71.92万 - 项目类别:
AMERICAN COLLEGE OF SURGEONS ONCOLOGY TRIALS GROUP
美国外科医生学院肿瘤学试验组
- 批准号:
2896232 - 财政年份:1998
- 资助金额:
$ 71.92万 - 项目类别:














{{item.name}}会员




