Mathematical Modeling, Analysis and Simulation of Biofilm Processes
生物膜过程的数学建模、分析和模拟
基本信息
- 批准号:RGPIN-2014-04375
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bacterial biofilms are microbial depositions on submerged surfaces (a.k.a substratum). In the initial reversible step of biofilm formation bacteria attach to the surface. Cells that stay adhered start producing an extracellular polymeric substance in which they are themselves embedded and that protects them against mechanical washout and antimicrobials. In this protective layer, vivid microbial communities develop. Biofilms are important, e.g for the development of technologies for wastewater treatment or soil remediation. On the other hand biofilms are detrimental in a medical context, where they can lead to difficult to eradicate bacterial infections or hygienic problems. Despite their name, biofilms are often not homogeneous films but can develop in highly irregular architectures. Life in biofilm communities is substantially different from life in suspended or planktonic populations, on which experimental and mathematical microbiology have traditionally focused. This is largely due to the spatial organisation of biofilms, which leads to substrate gradients, and, hence, to spatially heterogeneous growth conditions. Therefore, many of the traditional models of microbial ecology, typically formulated as ODEs for batch or continuous cultures, cannot be applied, but an entirely different class of models must be developed. The microbial and physical complexity of biofilms is often reflected in the mathematical complexity of these models.
Several mathematical models of biofilms have been proposed in the literature, drawing on very different mathematical concepts and approaches. Our focus will be on density-dependent diffusion-reaction systems, which we have shown can be interpreted both as a spatially structured microbial populations and as a description of biofilms as complex fluids. In its simplest prototype form this model comprises a porous medium degeneracy when the dependent variable vanishes and simultaneously a super-diffusion singularity when the dependent variable reaches maximum cell density. We have developed a solution theory for this protoype system previously, as well as numerical methods for their simulation. Over the duration of this grant new aspects of biofilms will be incorporated in this model framework which lead to additional mathematical challenges and require a substantial extension and re-thinking of these techniques.
One focus will be on spatial mixing in multi-species systems. We revise our previous model to show how the problem leads to additional cross-diffusion terms which we have so far neglected. Another emphasis will be on what we vaguely call chemically induced detachment (to distinguish it from shear induced detachment), including detachment controlled by cell-to-cell signaling, or breakdown of the EPS by enzymes. This will require us to consider concurrently motile and sessile bacterial phases and the exchange between these two modes of growth. A third aspect we want to include is the situation where bacteria degrade the substratum on which they grow, which requires us to consider reactive boundary conditions. This is a phenomenon observed for certain biofuel producing biofilms.
Some of the biofilm aspects that we will study are of fundamental nature, others are closely tied to specific systems. In all cases they will be motivated by particular biofilm applications. Applications that we consider will include biofuel production by cellulolytic biofilms; wastewater treatment processes; signal based biofilm control strategies; groundwater protection and soil remediation; (bio)control of detrimental biofilms in food safety and industry.
细菌生物膜是微生物沉积在水下表面(也称为基质)。在生物膜形成的最初可逆步骤中,细菌附着于表面。保持粘附的细胞开始产生细胞外聚合物,它们自身嵌入其中,并保护它们免受机械冲洗和抗菌剂的影响。在这个保护层中,活跃的微生物群落发育。生物膜是重要的,例如用于废水处理或土壤修复的技术的发展。另一方面,生物膜在医学背景下是有害的,其中它们可能导致难以根除细菌感染或卫生问题。尽管它们的名字,生物膜往往不是均匀的膜,但可以在高度不规则的结构中发展。生物膜群落中的生命与实验和数学微生物学传统上关注的悬浮或浮游种群中的生命有很大不同。这在很大程度上是由于生物膜的空间组织,这导致基板梯度,并因此,空间异质性的生长条件。因此,许多传统的微生物生态学模型,通常制定为ODE分批或连续培养,不能应用,但必须开发一个完全不同的类的模型。生物膜的微生物和物理复杂性往往反映在这些模型的数学复杂性。
在文献中已经提出了几种生物膜的数学模型,利用非常不同的数学概念和方法。我们的重点将是密度依赖的扩散反应系统,我们已经表明,可以解释为一个空间结构的微生物种群和描述的生物膜作为复杂的流体。在其最简单的原型形式,该模型包括一个多孔介质退化时,因变量消失,同时超扩散奇点时,因变量达到最大细胞密度。我们已经开发了一个解决方案的理论,这个原型系统以前,以及数值模拟的方法。在此资助期间,生物膜的新方面将被纳入该模型框架,这将导致额外的数学挑战,并需要对这些技术进行实质性的扩展和重新思考。
一个重点将是在多物种系统的空间混合。我们修改我们以前的模型,以显示如何导致额外的交叉扩散项,我们迄今为止忽略的问题。另一个重点是我们含糊地称之为化学诱导的脱离(以区别于剪切诱导的脱离),包括由细胞间信号传导控制的脱离,或酶对EPS的分解。这就要求我们同时考虑细菌的运动期和固着期,以及这两种生长模式之间的交换。我们想包括的第三个方面是细菌降解它们生长的基质的情况,这需要我们考虑反应边界条件。这是在某些产生生物燃料的生物膜中观察到的现象。
我们将研究的生物膜的一些方面是基本的性质,其他方面与特定的系统密切相关。在所有情况下,它们将受到特定生物膜应用的激励。我们考虑的应用将包括通过纤维素分解生物膜生产生物燃料;废水处理过程;基于信号的生物膜控制策略;地下水保护和土壤修复;食品安全和工业中有害生物膜的(生物)控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eberl, Hermann其他文献
Eberl, Hermann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eberl, Hermann', 18)}}的其他基金
Mathematical Approaches in Biofilm Research
生物膜研究中的数学方法
- 批准号:
RGPIN-2019-05003 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Approaches in Biofilm Research
生物膜研究中的数学方法
- 批准号:
RGPIN-2019-05003 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Approaches in Biofilm Research
生物膜研究中的数学方法
- 批准号:
RGPIN-2019-05003 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Approaches in Biofilm Research
生物膜研究中的数学方法
- 批准号:
RGPIN-2019-05003 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Advanced Workstations for Research in Computational Biomathematics
用于计算生物数学研究的先进工作站
- 批准号:
RTI-2019-00317 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Research Tools and Instruments
Mathematical Modeling, Analysis and Simulation of Biofilm Processes
生物膜过程的数学建模、分析和模拟
- 批准号:
RGPIN-2014-04375 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Modeling, Analysis and Simulation of Biofilm Processes
生物膜过程的数学建模、分析和模拟
- 批准号:
RGPIN-2014-04375 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computational Biomathematics
计算生物数学
- 批准号:
1000221344-2010 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Canada Research Chairs
Computational Biomathematics Laboratory: Workstations for Computer Simulations at the Interface of Applied Mathematics with the Life, Physical, and Engineering Sciences
计算生物数学实验室:应用数学与生命、物理和工程科学接口的计算机模拟工作站
- 批准号:
RTI-2016-00080 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Research Tools and Instruments
Computational Biomathematics
计算生物数学
- 批准号:
1221344-2010 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Canada Research Chairs
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Mathematical modeling and mathematical analysis of bacterial colony patterns
细菌菌落模式的数学建模和数学分析
- 批准号:
23K03225 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a crossover electrophysiological analysis system integrating AI and mathematical modeling
人工智能与数学建模交叉电生理分析系统开发
- 批准号:
23K15155 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical analysis and modeling of Notch signaling in zebrafish somitogenesis
斑马鱼体细胞发生中Notch信号的数学分析和建模
- 批准号:
RGPIN-2020-07097 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Investigating blood pressure regulation during pregnancy: a mathematical modeling, data analysis, and large-scale simulations approach
研究怀孕期间的血压调节:数学建模、数据分析和大规模模拟方法
- 批准号:
569342-2022 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Elucidation of the mechanism of vascular network formation by mathematical modeling based on in vitro data analysis
基于体外数据分析的数学模型阐明血管网络形成机制
- 批准号:
22K03421 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis and modeling of Notch signaling in zebrafish somitogenesis
斑马鱼体细胞发生中Notch信号的数学分析和建模
- 批准号:
RGPIN-2020-07097 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Study of Mathematical Modeling and Analysis for Antidune in Rivers
河流反沙丘数学建模与分析研究
- 批准号:
21K18586 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Eighth International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
第八届生物系统群体数学建模与分析国际会议
- 批准号:
2137047 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Dynamic analysis of anti-carcinogenic ions by harmonizing of Quantum / X-ray beam technology with mathematical modeling
量子/X射线束技术与数学建模相结合,进行抗癌离子的动态分析
- 批准号:
21K21009 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
3D analysis of chromatin structure in cell nucleus with electron microscopy and mathematical modeling
利用电子显微镜和数学建模对细胞核染色质结构进行 3D 分析
- 批准号:
21K18234 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)