Development of innovative speech enhancement algorithms based on the central auditory system.

开发基于中央听觉系统的创新语音增强算法。

基本信息

  • 批准号:
    RGPIN-2014-05301
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Multimedia devices such as tablets, smart phones and now smart watches and glasses are commonly used in noisy environments by millions of Canadians. These devices include many speech processing algorithms, such as speech coders or automatic speech recognizers (ASR), whose performances are seriously affected by the presence of noise. For example, an ASR can identify 85% of the words correctly in a noise-free environment; however, this percentage can drop to 31% with a signal-to-noise ratio (SNR) of 10 dB. In order to limit this decrease in performance, speech enhancement (SE) modules, which aim at reducing the noise level without affecting the speech quality, are included in these devices. The performance of these SE modules is largely sub-optimal. In fact, a study having compared 14 of the best SE algorithms reports a maximum subjective score of barely 3/5 for an SNR of 10 dB. In sharp contrast, the auditory system deals very well with noise. In fact, it is fairly easy for humans to follow a conversation in a relatively noisy environment. The long-term objective (+ 10 years) of my research program is thus to develop commercially viable SE algorithms that are inspired by the central auditory system, i.e. the part of the auditory system between the auditory nerve and auditory cortex, with the goal of approaching the excellent performance of the auditory system in the presence of noise. In the short-term (less than 5 years), the main objectives will be to statistically model the representation of noisy vocalizations by the neurons of the central auditory system as well as to develop SE algorithms based on these models. To achieve these short-term objectives, we will first represent neural discharges as point processes and use this representation to develop statistical models of neural coding and decoding; neural coding being the estimation of a spike train given a stimulus, such as a vocalization, and neural decoding, the estimation of a stimulus given a spike train. These models will specifically take into account the presence of noise in vocalizations. Furthermore, we will use the derived models to develop statistical estimators for SE. Since these statistical estimators will be set in a domain closer to the one of the central auditory system, we expect the resulting estimators to be more perceptually relevant and thus more efficient. The recent development of accurate, yet simple, statistical models of neural signals opens a promising research avenue for SE that will be exploited in the current proposal. Moreover, this proposal will allow for the training of multidisciplinary researchers having skills in neuroscience, statistical signal processing and speech processing. Upon completion, this program will improve the performance of SE modules and will therefore allow a much more efficient use of millions of multimedia portable devices such as tablets, smart phones, watches or glasses.
多媒体设备,如平板电脑、智能手机、现在的智能手表和眼镜,在嘈杂的环境中被数百万加拿大人普遍使用。这些设备包括许多语音处理算法,如语音编码器或自动语音识别器(ASR),其性能受到噪声的严重影响。例如,在无噪声环境下,ASR可以正确识别85%的单词;然而,当信噪比(SNR)为10 dB时,该百分比可以降至31%。为了限制这种性能下降,这些设备中包括旨在降低噪声水平而不影响语音质量的语音增强(SE)模块。这些SE模块的性能在很大程度上不是最优的。事实上,一项比较了14种最佳SE算法的研究报告称,在信噪比为10 dB的情况下,最大主观评分仅为3/5。与之形成鲜明对比的是,听觉系统能很好地处理噪音。事实上,在相对嘈杂的环境中,人类很容易跟上对话。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Plourde, Eric其他文献

A Point Process Model for Auditory Neurons Considering Both Their Intrinsic Dynamics and the Spectrotemporal Properties of an Extrinsic Signal
Recent Developments in Speech Enhancement in the Short-Time Fourier Transform Domain
  • DOI:
    10.1109/mcas.2016.2583681
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Parchami, Mahdi;Zhu, Wei-Ping;Plourde, Eric
  • 通讯作者:
    Plourde, Eric
The effect of input noises on the activity of auditory neurons using GLM-based metrics*
  • DOI:
    10.1088/1741-2552/abe979
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Hosseini, Maryam;Rodriguez, Gerardo;Plourde, Eric
  • 通讯作者:
    Plourde, Eric
Regularized non-negative matrix factorization with Gaussian mixtures and masking model for speech enhancement
  • DOI:
    10.1016/j.specom.2016.11.003
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Chung, Hanwook;Plourde, Eric;Champagne, Benoit
  • 通讯作者:
    Champagne, Benoit
A Flexible Bio-Inspired Hierarchical Model for Analyzing Musical Timbre

Plourde, Eric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Plourde, Eric', 18)}}的其他基金

Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPIN-2020-05077
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPAS-2020-00112
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPAS-2020-00112
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPIN-2020-05077
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPIN-2020-05077
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPAS-2020-00112
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Development of innovative speech enhancement algorithms based on the central auditory system.
开发基于中央听觉系统的创新语音增强算法。
  • 批准号:
    RGPIN-2014-05301
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation of the visual perception in retinal prosthesis
视网膜假体视觉感知的模拟
  • 批准号:
    529532-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Engage Grants Program
Development of innovative speech enhancement algorithms based on the central auditory system.
开发基于中央听觉系统的创新语音增强算法。
  • 批准号:
    RGPIN-2014-05301
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Development of innovative speech enhancement algorithms based on the central auditory system.
开发基于中央听觉系统的创新语音增强算法。
  • 批准号:
    RGPIN-2014-05301
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
  • 批准号:
    10765218
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
PRECARE is an innovative and integrated platform designed to improve the developmental surveillance of the baby.
PRECARE 是一个创新的集成平台,旨在改善婴儿的发育监测。
  • 批准号:
    10603833
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Innovative mHealth Intervention providing Sustained Anticipatory Guidance (Zero Cavity): Design, Validation, User Perception, and Effectiveness
创新的移动医疗干预提供持续的预期指导(零腔):设计、验证、用户感知和有效性
  • 批准号:
    10740549
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Determining Host-microbiome guided oro-nasal fistula healing
确定宿主微生物组引导口鼻瘘愈合
  • 批准号:
    10373683
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Project 2: Technology Support for Cognition and Social Engagement for Aging Adults with Mild Cognitive Impairment (MCI)
项目 2:为患有轻度认知障碍 (MCI) 的老年人提供认知和社会参与的技术支持
  • 批准号:
    10410769
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Developing a stable cell line expressing recombinant sclerostin
开发表达重组硬化素的稳定细胞系
  • 批准号:
    10385037
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
  • 批准号:
    10709654
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
  • 批准号:
    10923752
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
A digital tool for monitoring speech decline in ALS
用于监测 ALS 言语衰退的数字工具
  • 批准号:
    10482581
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
A digital tool for monitoring speech decline in ALS
用于监测 ALS 言语衰退的数字工具
  • 批准号:
    10838866
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了