Probabilistic Models for Performance-based Engineering, Applied to Tall Wood Buildings

基于性能的工程概率模型,应用于高层木结构建筑

基本信息

  • 批准号:
    RGPIN-2014-05451
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The safety and economic security of Canadians depend on the integrity of the built environment. Inadequate performance of structural components in buildings and infrastructure can lead to dramatic consequences and devastating losses. Recent events abroad have served notice to Canadian municipalities. One example is the 2011 earthquake in Christchurch, New Zealand, which caused casualties, monetary losses in excess of $20 billion, and long-term impacts on businesses and regional growth. Similar impacts have been observed when other earthquakes have struck modern urban regions around the world. On this background the increasing urbanization of Canada, particularly in the seismically active regions around Vancouver and Montreal, raises important concerns that are addressed in this proposal. Structural engineers must balance many concerns, ranging from potential damage and deterioration of buildings to environmental impacts of construction. In fact, a life-cycle viewpoint must be adopted, which considers several direct and indirect costs in conjunction with an array of hazards. A key concern in this proposal is damage due to earthquakes, but the objective is not to seek zero damage. This is because the cost of improving new and existing designs is substantial, both in monetary terms and also in terms of environmental impacts. Moreover, many sources of uncertainty prevent deterministic predictions of what will happen in the future in terms of hazards, structural performance, and costs. As a result, the goal is rather to help engineers identify and communicate the optimum allocation of resources based on a holistic consideration of risk. While this is a broadly accepted ideal, it requires an array of models, many of which are either unavailable or employed only in academic research. Substantial work is therefore required to complement conservative code equations with predictive models. Thus, 375 years since Galileo’s first efforts to predict the load capacity of beams, efforts by structural engineers to improve their models are as important as ever. The vision leading this proposal is that engineers in the future will use computer simulation models of the built environment as a basis for the quantification, mitigation, and communication of risk. The simulations will comprehensively model the hazards that the buildings and infrastructure are subjected to during their life cycle, and the results will quantify the ensuing costs. To address this challenge, an extensive research program is proposed with the aims of improving existing computer models, developing new ones, and unifying both in a holistic analysis framework. Building on the applicant’s expertise and a newly developed software platform, particular attention will be devoted to probabilistic analysis. The research outcomes will have broad applicability but the testbed application will be tall wood buildings. Prompted by initiatives in British Columbia, as well as a renaissance in tall wood buildings worldwide, this research will contribute to the safe and sustainable re-introduction of such buildings into seismic regions. The material of choice is cross-laminated timber (CLT), which is a new product with a growing market-share in multi-storey construction. The introduction of CLT comes as building code committees in Canada and around the world are seeking to amend prescriptive design rules with a more performance-based approach. For that reason, and because there is limited experience with tall CLT buildings in seismic regions, this type of construction represents an ideal opportunity to use performance predictions and a holistic consideration of risk as design bases. The development of computer models and tools for this purpose is the principal objective of this proposal.
加拿大人的安全和经济保障取决于建筑环境的完整性。建筑物和基础设施中结构部件的性能不足可能导致严重后果和毁灭性损失。最近国外发生的事件引起了加拿大各市政当局的注意。一个例子是2011年新西兰基督城发生的地震,造成人员伤亡,货币损失超过200亿美元,并对企业和区域增长产生长期影响。在世界各地的现代城市地区发生其他地震时,也观察到了类似的影响。在这一背景下,加拿大城市化程度的不断提高,特别是在温哥华和蒙特利尔周围的地震活跃地区,引起了本提案所述的重要关切。 结构工程师必须平衡许多问题,从建筑物的潜在损坏和恶化到施工对环境的影响。事实上,必须采用生命周期的观点,将若干直接和间接成本与一系列危害结合起来考虑。该提案的一个关键问题是地震造成的损害,但目标不是寻求零损害。这是因为改进新的和现有的设计的成本是巨大的,无论是在货币方面还是在环境影响方面。此外,许多不确定性的来源阻止了确定性的预测将发生什么在未来的危险,结构性能和成本。因此,我们的目标是帮助工程师在全面考虑风险的基础上确定和传达资源的最佳分配。虽然这是一个被广泛接受的理想,但它需要一系列模型,其中许多模型要么不可用,要么只用于学术研究。因此,需要大量的工作,以补充保守的代码方程与预测模型。因此,自伽利略首次预测梁的承载能力以来的375年,结构工程师改进模型的努力与以往一样重要。 这一提议的愿景是,未来的工程师将使用建筑环境的计算机模拟模型作为量化、缓解和沟通风险的基础。这些模拟将全面模拟建筑物和基础设施在其生命周期中遭受的危害,结果将量化随之而来的成本。为了应对这一挑战,提出了一个广泛的研究计划,其目的是改进现有的计算机模型,开发新的,并统一在一个整体的分析框架。利用申请人的专门知识和新开发的软件平台,将特别注意概率分析。研究成果将具有广泛的适用性,但试验台应用将是高层木结构建筑。在不列颠哥伦比亚省的倡议,以及在世界各地的高大木结构建筑的复兴,这项研究将有助于安全和可持续地重新引入这些建筑到地震区。选择的材料是交叉层压木材(CLT),这是一种在多层建筑中市场份额不断增长的新产品。CLT的引入正值加拿大和世界各地的建筑规范委员会正在寻求以更加基于性能的方法修改规范性设计规则之际。由于这个原因,并且由于在地震地区使用高层CLT建筑的经验有限,这种类型的建筑代表了使用性能预测和整体考虑风险作为设计基础的理想机会。为此目的开发计算机模型和工具是本提案的主要目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haukaas, Terje其他文献

Methods and object-oriented software for FE reliability and sensitivity analysis with application to a bridge structure
  • DOI:
    10.1061/(asce)0887-3801(2007)21:3(151
  • 发表时间:
    2007-05-01
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Haukaas, Terje;Kiureghian, Armen Der
  • 通讯作者:
    Kiureghian, Armen Der
Seismic fragility estimates for reinforced concrete bridges subject to corrosion
  • DOI:
    10.1016/j.strusafe.2008.10.001
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Choe, Do-Eun;Gardoni, Paolo;Haukaas, Terje
  • 通讯作者:
    Haukaas, Terje

Haukaas, Terje的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haukaas, Terje', 18)}}的其他基金

Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Models for Performance-based Engineering, Applied to Tall Wood Buildings
基于性能的工程概率模型,应用于高层木结构建筑
  • 批准号:
    RGPIN-2014-05451
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Models for Performance-based Engineering, Applied to Tall Wood Buildings
基于性能的工程概率模型,应用于高层木结构建筑
  • 批准号:
    RGPIN-2014-05451
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Models for Performance-based Engineering, Applied to Tall Wood Buildings
基于性能的工程概率模型,应用于高层木结构建筑
  • 批准号:
    RGPIN-2014-05451
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Models for Performance-based Engineering, Applied to Tall Wood Buildings
基于性能的工程概率模型,应用于高层木结构建筑
  • 批准号:
    RGPIN-2014-05451
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated research program for safety and sustainability of new and ageing infrastructure subjected to multiple hazards
针对遭受多种危险的新建和老化基础设施的安全性和可持续性的综合研究计划
  • 批准号:
    298284-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated research program for safety and sustainability of new and ageing infrastructure subjected to multiple hazards
针对遭受多种危险的新建和老化基础设施的安全性和可持续性的综合研究计划
  • 批准号:
    298284-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Proteomics-based assessment of drug performance in vivo by establishing target engagement methods and characterizing new disease models
通过建立靶点参与方法和表征新疾病模型,对体内药物性能进行基于蛋白质组学的评估
  • 批准号:
    2882689
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
  • 批准号:
    2220811
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Cooperative Agreement
Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
  • 批准号:
    568474-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Postdoctoral Fellowships
EAGER: III: Learning with less data: Capitalizing on formal pedagogies and human performance to incorporate domain knowledge into deep learning models
EAGER:III:用更少的数据学习:利用正规教学法和人类表现将领域知识纳入深度学习模型
  • 批准号:
    2228910
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Queueing Models and Performance Analysis -- Telecommunication Systems and Other Applications
排队模型和性能分析——电信系统和其他应用
  • 批准号:
    RGPIN-2018-04572
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Performance Measure and Models for Statistical Prediction
统计预测的性能测量和模型
  • 批准号:
    RGPIN-2019-04862
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Calibration and validation of mechanistic-empirical performance models for pavement design and remaining service life analysis
用于路面设计和剩余使用寿命分析的机械经验性能模型的校准和验证
  • 批准号:
    RGPIN-2018-05010
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High Predictive Performance Models via Semi-Parametric Survival Regression
通过半参数生存回归的高预测性能模型
  • 批准号:
    DP220102249
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Projects
Bayesian processes for calibration of building performance simulation models and optimisation of building energy systems design
用于校准建筑性能模拟模型和优化建筑能源系统设计的贝叶斯过程
  • 批准号:
    RGPIN-2019-06188
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了