FY 2023 SBIR TOPIC 402 PHASE II. ENHANCE THE PERFORMANCE OF THE AI FOR LYMPH NODE DETECTION, SEGMENTATION AND MEASUREMENTS AND DEVELOP ADDITIONAL AI MODELS FOR MALIGNANCY CLASSIFICATION LEVERAGING MU

2023 财年 SBIR 主题 402 第二阶段。

基本信息

  • 批准号:
    10928777
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-18 至 2025-09-17
  • 项目状态:
    未结题

项目摘要

The correct determination of nodal metastatic disease is imperative for patient management in oncology, since the patient’s prognosis and subsequent treatment are inherently linked to the stage of disease. Detection/segmentation of lymph node on imaging is a tedious, highly time-consuming process that is inherently subject to intra-/inter-observer variability. Malignancy classification of the lymph node improves both the diagnostic evaluation and treatment planning. An AI software, OncoAI, was successfully developed in Phase I that automatically detects and segments enlarged lymph nodes from MRI and CT and enables fully automated RECIST measurements. The overall goal of this Phase II proposal is to further enhance the performance of the AI models for lymph node detection, segmentation, and measurements and develop additional AI models for malignancy classification leveraging multi-modality imaging. Software functionality and usability will be further improved towards seamless incorporation within the clinical workflow. Finally, a multi-institutional validation study will be conducted to demonstrate the safety and effectiveness of OncoAI in clinical practice and obtain regulatory approval. The proposed aims will set a strong technical and regulatory foundation for OncoAI and contribute to not only commercial success, but also broader impact to the clinical practice of cancer care.
在肿瘤学中,正确确定淋巴结转移疾病对于患者的治疗是至关重要的,因为患者的预后和随后的治疗与疾病的分期有着内在的联系。在成像上检测/分割淋巴结是一个繁琐、非常耗时的过程,而且固有地受到观察者内/观察者间变异性的影响。对淋巴结进行恶性肿瘤分类,可提高诊断评估和治疗计划。在第一阶段成功开发了一款人工智能软件OncoAI,该软件可以自动检测和分割来自MRI和CT的增大的淋巴结,并实现全自动RECIST测量。这项第二阶段提案的总体目标是进一步提高用于淋巴结检测、分割和测量的人工智能模型的性能,并利用多模式成像开发更多用于恶性肿瘤分类的人工智能模型。软件功能和可用性将得到进一步改进,以实现临床工作流程中的无缝结合。最后,将进行一项多机构验证研究,以证明OncoAI在临床实践中的安全性和有效性,并获得监管部门的批准。拟议的目标将为OncoAI奠定坚实的技术和监管基础,不仅有助于商业上的成功,而且还将对癌症护理的临床实践产生更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XUE FENG, PH.D.其他文献

XUE FENG, PH.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
Identifying Brain Network Features that Underlie Clinical Classification
识别临床分类基础的大脑网络特征
  • 批准号:
    574538-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    University Undergraduate Student Research Awards
Transcriptomic classification of non-muscle invasive bladder cancer and its clinical and prognostic implication
非肌层浸润性膀胱癌的转录组学分类及其临床和预后意义
  • 批准号:
    10693811
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
Transcriptomic classification of non-muscle invasive bladder cancer and its clinical and prognostic implication
非肌层浸润性膀胱癌的转录组学分类及其临床和预后意义
  • 批准号:
    10388707
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
Comparing the World Health Organization's ICD-11 Clinical Descriptions and Diagnostic Guidelines to the American Psychiatric Association's DSM-5 in clinical settings: Which classification is best for Canadian health care and Canadian health information?
在临床环境中比较世界卫生组织的 ICD-11 临床描述和诊断指南与美国精神病学协会的 DSM-5:哪种分类最适合加拿大医疗保健和加拿大健康信息?
  • 批准号:
    447530
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Operating Grants
Histopathological classification of the immune microenvironment of hepatocellular carcinoma including all clinical stages
肝细胞癌免疫微环境的组织病理学分类,包括所有临床阶段
  • 批准号:
    21K15407
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
0238 AI Classification of COVID - 19 studies to ensure clinical guidance and healthcare policy is informed by current meta-analysis of all available evidence
0238 COVID-19 研究的 AI 分类,以确保通过对所有可用证据的当前荟萃分析为临床指导和医疗保健政策提供信息
  • 批准号:
    72665
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Collaborative R&D
Molecular signature-based classification of circulating tumor cells and its clinical application for refinement of multidisciplinary treatment of pancreatic cancer.
基于分子特征的循环肿瘤细胞分类及其在改进胰腺癌多学科治疗中的临床应用。
  • 批准号:
    19K09209
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
TP53 variant classification models to improve clinical care of patients
TP53变异分类模型可改善患者的临床护理
  • 批准号:
    nhmrc : GNT1161589
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Project Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了