Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
碳框架的困难组合搜索问题以及图论模型和算法
基本信息
- 批准号:RGPIN-2014-05864
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Theme 1. Difficult Combinatorial Search Problems
The graph coloring problem takes as input a graph G and the aim is to color the vertices of G so that adjacent vertices are different colors. This problem is so hard that there are some reasonably small graphs such that finding an optimal coloring is either overly time consuming or not feasible using existing algorithms. One goal of my research is to find faster graph coloring algorithms. The graph coloring problem has many applications including determination of conflict-free schedules, map coloring, and register allocation.
Venn diagrams give pictorial representations of all possible logical relations between a finite collection of sets. We plan to exhaustively generate new classes of Venn diagrams. The computational results can be used to investigate conjectures about Venn diagrams. One example of an open question is Winkler's conjecture that any simple Venn diagram can be extended to a larger simple Venn diagram with the addition of a single curve.
An (r, g)-cage is a graph having a minimum number of vertices such that each vertex has degree r and the minimum cycle size is g. Cages have attracted a lot of interest from the graph theory community and have properties that make them appealing for a network topology. There are many values for r and g where there is a large gap between the lower bounds given for an (r,g)-cage and the upper bound coming from the number of vertices in a smallest known existing r-regular graph of girth g. Our intent is to try to close those gaps.
Theme 2. Graph Theory Models and Algorithms for Carbon Frameworks
Graphs are often used by chemists as models for molecules. The molecules considered in this research have carbon frameworks. Fullerenes correspond to 3-regular planar graphs with face sizes 5 or 6. Although fullerenes were only recently discovered (1985) they have been the subject of intense research because of their unique chemistry and potential application in materials science, electronics, nanotechnology and medicine. Benzenoids are unsaturated molecules composed of fused hexagonal rings. More generally, polycyclic aromatic hydrocarbons (PAH's) have mixtures of ring sizes 4, 5, 6 and 7. They occur naturally and as atmospheric pollutants from burning fuels, and can be carcinogenic. The goal of this research is to better understand properties of these molecules such as currents, stability, geometry, and resonance energy. Understanding induced currents is critical for interpreting chemical characterisation by Nuclear Magnetic Resonance.
Graph theory models for current represent current by giving a direction and magnitude to each edge of the molecular graph. Graph theory models for currents can be easier to implement and give a simpler representation of the answer than some other numerical approaches. They facilitate prediction of currents for infinite families of molecules. One of our goals is to compare current models to each other looking for inconsistencies and anomalies. The next step is to refine or redevelop the graph theory based methods so that they more accurately reflect the current. The graph theoretic approaches published so far are better suited to benzenoids which are often fairly flat. We plan to develop extensions for predicting current in 3D structures such as fullerenes, or cases where the graph has no perfect matchings or where the cycle sizes vary as for PAH's.
Further research will involve determining correlations between computed graph invariants and chosen molecular properties. Definition of new invariants is all too easy, but we will identify those that are efficiently computable and offer information content related to geometry and energy of molecular and extended carbon frameworks
主题1。复杂组合搜索问题
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Myrvold, Wendy其他文献
The "Anthracene Problem": Closed-Form Conjugated-Circuit Models of Ring Currents in Linear Polyacenes
- DOI:
10.1021/jp206548t - 发表时间:
2011-11-17 - 期刊:
- 影响因子:2.9
- 作者:
Fowler, Patrick W.;Myrvold, Wendy - 通讯作者:
Myrvold, Wendy
Myrvold, Wendy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Myrvold, Wendy', 18)}}的其他基金
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
Carbon框架的困难组合搜索问题以及图论模型和算法
- 批准号:
RGPIN-2014-05864 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
Carbon框架的困难组合搜索问题以及图论模型和算法
- 批准号:
RGPIN-2014-05864 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
碳框架的困难组合搜索问题以及图论模型和算法
- 批准号:
RGPIN-2014-05864 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
Carbon框架的困难组合搜索问题以及图论模型和算法
- 批准号:
RGPIN-2014-05864 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
Carbon框架的困难组合搜索问题以及图论模型和算法
- 批准号:
RGPIN-2014-05864 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Finding torus obstructions/graph theory and algorithms for chemistry
寻找环面障碍物/化学图论和算法
- 批准号:
41927-2009 - 财政年份:2013
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Finding torus obstructions/graph theory and algorithms for chemistry
寻找环面障碍物/化学图论和算法
- 批准号:
41927-2009 - 财政年份:2012
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Finding torus obstructions/graph theory and algorithms for chemistry
寻找环面障碍物/化学图论和算法
- 批准号:
41927-2009 - 财政年份:2011
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Finding torus obstructions/graph theory and algorithms for chemistry
寻找环面障碍物/化学图论和算法
- 批准号:
41927-2009 - 财政年份:2010
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Finding torus obstructions/graph theory and algorithms for chemistry
寻找环面障碍物/化学图论和算法
- 批准号:
41927-2009 - 财政年份:2009
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Travel: Student Travel Grant for Symposium on Combinatorial Search (SoCS) 2024
旅行:2024 年组合搜索 (SoCS) 研讨会的学生旅行补助金
- 批准号:
2420419 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
Symposium on Combinatorial Search - 2017
组合搜索研讨会 - 2017
- 批准号:
2227523 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
Combinatorial Search-Type Problems for Mobile Agents
移动代理的组合搜索类型问题
- 批准号:
RGPIN-2022-03811 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Comprehensive Search for Novel Antiperovskite Superconductors by Bulk Combinatorial Method
体组合法综合寻找新型反钙钛矿超导体
- 批准号:
22K04193 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Symposium on Combinatorial Search (SoCS) 2023
会议:2023 年组合搜索 (SoCS) 研讨会
- 批准号:
2235754 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
Carbon框架的困难组合搜索问题以及图论模型和算法
- 批准号:
RGPIN-2014-05864 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Satisfiablity Solving + Computer Algebra: A Powerful New Method for Combinatorial Search
可满足性求解计算机代数:一种强大的组合搜索新方法
- 批准号:
532829-2019 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Postdoctoral Fellowships
Difficult Combinatorial Search Problems and Graph Theory Models and Algorithms for Carbon Frameworks
Carbon框架的困难组合搜索问题以及图论模型和算法
- 批准号:
RGPIN-2014-05864 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Search-Based Optimization of Combinatorial Structures via Expensive Experiments
职业:通过昂贵的实验进行基于搜索的组合结构优化
- 批准号:
1845922 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Continuing Grant
An Investigation into the Application of Iterated-Local-Search for Combinatorial Optimisation
迭代局部搜索在组合优化中的应用研究
- 批准号:
2297305 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Studentship














{{item.name}}会员




