CAREER: Search-Based Optimization of Combinatorial Structures via Expensive Experiments

职业:通过昂贵的实验进行基于搜索的组合结构优化

基本信息

  • 批准号:
    1845922
  • 负责人:
  • 金额:
    $ 54.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Many design-optimization problems in science and engineering applications involve performing experiments that are expensive in terms of the consumed resources (computational or physical). These experiments are often guided by intuition and performed by human engineers and scientists in an series of investigations informed by results of prior experiments. This experimental design process can be very challenging when the design space is combinatorial with rich structure among the design variables (e.g., sets, sequences, and graphs). This five-year project is an integrated research, education, and outreach program focused on transforming the practice of optimizing combinatorial design spaces by developing new artificial intelligence (AI) based algorithms for such experiments. The research goal of this project is to develop a new search-based learning and optimization framework to address the challenges associated with optimizing combinatorial design spaces consisting of discrete and hybrid (mixture of discrete and continuous design variables) structures. This framework tightly integrates advances in machine learning and AI search to intelligently explore the design space by reasoning about the available resource budget and the usefulness of potential information the experiments may provide. The search-based framework will be extended to two novel settings towards the goal of improving the resource-efficiency for design optimization. First, the side-information generated by the experiments will be modeled and exploited appropriately. Second, multi-fidelity experiments that trade off accuracy and consumed resources will be leveraged based on their availability. The project will apply the developed algorithms to revolutionize the areas of electronic design automation, design of materials, and design of synthetic microbiomes via close collaboration with domain experts from these application areas. The techniques developed in this project will be made available to academia and industry through open-source software. Results will be disseminated widely through research papers, conference presentations, tutorials, and short courses to maximize the benefits to the scientific community. Educational and outreach activities will include a novel Ambassador program to improve the interest of community college students including under-represented minorities in computer science careers; involving undergraduate students in research projects; a short summer-course on data-driven design optimization for engineers and scientists at WSU; and recruiting and mentoring under-represented minority groups in computer science and engineering through an existing program called LSAMP at Washington State University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程应用中的许多设计优化问题都涉及执行耗费资源(计算或物理)代价高昂的实验。这些实验通常由直觉指导,由人类工程师和科学家根据先前实验的结果进行一系列调查。当设计空间是在设计变量(例如,集合、序列和图)中具有丰富结构的组合时,这种实验性设计过程可能是非常具有挑战性的。这个为期五年的项目是一个综合的研究、教育和推广计划,专注于通过为此类实验开发基于人工智能(AI)的新算法来转变优化组合设计空间的做法。本项目的研究目标是开发一种新的基于搜索的学习和优化框架,以解决与优化由离散和混合(离散和连续设计变量的混合)结构组成的组合设计空间相关的挑战。该框架紧密结合了机器学习和人工智能搜索的先进技术,通过对可用资源预算和实验可能提供的潜在信息的有用性进行推理,智能地探索设计空间。基于搜索的框架将扩展到两个新的环境,以实现提高设计优化的资源效率的目标。首先,实验产生的边信息将被适当地建模和利用。其次,在精确度和资源消耗之间权衡的多保真实验将基于其可用性而得到利用。该项目将通过与来自这些应用领域的领域专家的密切合作,将开发的算法应用于电子设计自动化、材料设计和合成微生物设计领域。该项目开发的技术将通过开放源码软件提供给学术界和工业界。研究成果将通过研究论文、会议报告、教程和短期课程广泛传播,以最大限度地造福于科学界。教育和外展活动将包括一项新颖的大使计划,以提高社区大学生(包括未被充分代表的少数族裔)对计算机科学职业的兴趣;让本科生参与研究项目;在华盛顿州立大学为工程师和科学家举办关于数据驱动的设计优化的短期暑期课程;以及通过华盛顿州立大学现有的名为LSAMP的计划,在计算机科学和工程领域招募和指导未被充分代表的少数群体。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of Multi-Output Switched-Capacitor Voltage Regulator via Machine Learning
基于机器学习的多输出开关电容稳压器设计
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyuan Zhou*, Syrine Belakaria*
  • 通讯作者:
    Zhiyuan Zhou*, Syrine Belakaria*
Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space Entropy Search Approach
多保真多目标贝叶斯优化:一种输出空间熵搜索方法
Bayesian Optimization over Hybrid Spaces
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aryan Deshwal;Syrine Belakaria;J. Doppa
  • 通讯作者:
    Aryan Deshwal;Syrine Belakaria;J. Doppa
Bayesian Optimization over Permutation Spaces
  • DOI:
    10.1609/aaai.v36i6.20604
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aryan Deshwal;Syrine Belakaria;J. Doppa;D. Kim
  • 通讯作者:
    Aryan Deshwal;Syrine Belakaria;J. Doppa;D. Kim
Autonomous Design Space Exploration of Computing Systems for Sustainability: Opportunities and Challenges
  • DOI:
    10.1109/mdat.2019.2932894
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Doppa, Janardhan Rao;Bogdan, Paul;Rosca, Justinian
  • 通讯作者:
    Rosca, Justinian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janardhan Rao Doppa其他文献

Janardhan Rao Doppa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janardhan Rao Doppa', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955353
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
OAC Core: Small: Sust-CI: A Machine Learning based Approach to Make Advanced Cyberinfrastructure Applications More Efficient and Sustainable
OAC 核心:小型:Sust-CI:基于机器学习的方法,使先进的网络基础设施应用程序更加高效和可持续
  • 批准号:
    1910213
  • 财政年份:
    2019
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant

相似海外基金

Prompt-Based and Contrastive Learning for Sensitivity-Aware Search
用于敏感性感知搜索的基于提示和对比的学习
  • 批准号:
    2812964
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Studentship
Search for therapeutic target molecules based on temporal hierarchical analysis of Oral squamous cell carcinoma and functional RNA molecules
基于口腔鳞状细胞癌和功能RNA分子的时间层次分析寻找治疗靶分子
  • 批准号:
    23K16142
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
  • 批准号:
    2400301
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
Study for galaxy evolution in dense environment based on a systematic search for galaxy protoclusters
基于系统搜索星系原团的稠密环境下星系演化研究
  • 批准号:
    22KJ0834
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Verification of teaching effectiveness based on a elementary school foreign language classroom corpus and development of a CEFR-J compliant teaching method search tool
基于小学外语课堂语料库的教学效果验证及符合CEFR-J标准的教法检索工具开发
  • 批准号:
    23K00708
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Factor analysis of the formation process of motivation to exercise based on statistical causal search
基于统计因果搜索的运动动机形成过程因子分析
  • 批准号:
    23K10794
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding and Improving Search-Based Algorithms for Neural Sequence Generation
理解和改进基于搜索的神经序列生成算法
  • 批准号:
    RGPIN-2022-04154
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Discovery Grants Program - Individual
A k-mer-based search engine for sequencing databases
基于 k-mer 的测序数据库搜索引擎
  • 批准号:
    2138585
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
  • 批准号:
    RGPIN-2021-03495
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Discovery Grants Program - Individual
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
  • 批准号:
    2207270
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了