Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
基本信息
- 批准号:RGPIN-2015-05688
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Imagine a visual world of random blotches of colour and texture, like an abstract painting. This is a world without shape, and it illustrates how our capacity to see structure and recognize objects is determined by our ability to perceive shape. In the proposed project we will employ a novel combination of psychophysical and computational methods to determine how the human brain extracts and represents 2D and 3D shape information from contours in complex imagery, and will develop improved computer vision algorithms for object segmentation and shape processing based upon these insights.
The seemingly effortless way in which we perceive shape belies a daunting complexity. As you gaze around you now your visual world is likely a complex clutter of partially occluded objects, variegated lighting and shadows. These complexities fragment objects into perceptual shards that the brain must correctly group together in order to compute accurate representations of shape. This process of perceptual organization is a combinatorial problem of exponential complexity, yet the brain solves it reliably and efficiently, vastly outperforming current computer vision algorithms. This impressive performance appears to derive from the brain’s ability to fuse multiple local and global grouping cues within a recurrent hierarchical neural architecture. A major deliverable of the proposed work is a detailed and testable computational model of this neural circuit informed by a key set of new psychophysical experiments.
Natural shapes generally sweep out low-dimensional curved manifolds in a high dimensional shape space. While most effort in computer vision has focused on discriminative methods for separating these manifolds, a fully generative model is required to support perceptual grouping and many other tasks. The challenge is thus to identify efficient but fully generative models of shape. Prior work has been challenged by topological instability, but our recent formlet theory of shape solves this problem. A second deliverable of the proposed work is a fully probabilistic graphical formlet model of 2D shape, evaluated psychophysically as a model for human shape representation.
While most studies of 3D shape perception focus on depth cues to shape such as stereopsis, or surface cues such as shading, the 2D shape of the bounding image contour is also known to strongly influence 3D shape perception. A third deliverable of the project is a new probabilistic model for estimation of 3D shape from the bounding contour, represented using a 3D extension of our formlet theory.
These results will substantially advance our understanding of shape processing in human visual cortex. The algorithms developed here will form the basis for applications in automatic video analytics for traffic surveillance and for 2D to 3D film conversion.
想象一个由随机的颜色和纹理斑点组成的视觉世界,就像一幅抽象画。这是一个没有形状的世界,它说明了我们看到结构和识别物体的能力是如何由我们感知形状的能力决定的。在拟议的项目中,我们将使用一种新的心理物理和计算方法的组合来确定人脑如何从复杂图像的轮廓中提取和表示2D和3D形状信息,并将基于这些见解开发用于对象分割和形状处理的改进的计算机视觉算法。
我们感知形状的看似毫不费力的方式掩盖了令人望而生畏的复杂性。当你现在凝视周围时,你的视觉世界很可能是由部分遮挡的物体、五颜六色的灯光和阴影组成的复杂杂乱。这些复杂性将物体分割成感知碎片,大脑必须正确地将这些碎片组合在一起,才能计算出准确的形状表示。这个感知组织的过程是一个指数复杂性的组合问题,但大脑可靠而有效地解决了这个问题,远远超过了当前的计算机视觉算法。这一令人印象深刻的表现似乎来自大脑在递归的分层神经架构中融合多个局部和全局分组线索的能力。这项拟议工作的一个主要成果是这个神经回路的详细和可测试的计算模型,该模型由一组关键的新心理物理实验提供信息。
自然形状通常扫过高维形状空间中的低维曲线流形。虽然计算机视觉的大部分努力都集中在区分这些流形的方法上,但需要一个完全生成的模型来支持感知分组和许多其他任务。因此,挑战是找出高效但完全具有生成性的形状模型。以前的工作受到了拓扑不稳定性的挑战,但我们最近的形状形体理论解决了这个问题。提出的工作的第二个可交付成果是2D形状的完全概率图形模板模型,作为人体形状表示的模型进行心理物理评估。
虽然大多数关于3D形状感知的研究都集中在形状的深度线索(如立体视觉)或表面线索(如阴影)上,但边界图像轮廓的2D形状也是已知的强烈影响3D形状感知的因素。该项目的第三个成果是一个新的概率模型,用于从边界轮廓估计3D形状,该模型使用我们的Formlet理论的3D扩展表示。
这些结果将极大地促进我们对人类视觉皮质中的形状处理的理解。这里开发的算法将为交通监控的自动视频分析和2D到3D电影转换的应用奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elder, James其他文献
Multicenter Validation of Deep Learning Algorithm ROP.AI for the Automated Diagnosis of Plus Disease in ROP.
- DOI:
10.1167/tvst.12.8.13 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:3
- 作者:
Bai, Amelia;Dai, Shuan;Hung, Jacky;Kirpalani, Aditi;Russell, Heather;Elder, James;Shah, Shaheen;Carty, Christopher;Tan, Zachary - 通讯作者:
Tan, Zachary
Elder, James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elder, James', 18)}}的其他基金
Human and machine perception of 2D and 3D shape from contour
人类和机器从轮廓感知 2D 和 3D 形状
- 批准号:
RGPIN-2022-04533 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Training Experience
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Training Experience
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Training Experience
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Training Experience
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Training Experience
Attentive sensor for dynamic scene analysis
用于动态场景分析的细心传感器
- 批准号:
500187-2016 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Idea to Innovation
相似海外基金
fMRI Reverse Correlation as a Novel Method for Revealing Computations Underlying Perceptual Grouping
fMRI 逆相关作为揭示感知分组基础计算的新方法
- 批准号:
2122866 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Computations Underlying Multisensory Perceptual Decision Making
多感官知觉决策基础的计算
- 批准号:
528735-2018 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual