Human and machine perception of 2D and 3D shape from contour
人类和机器从轮廓感知 2D 和 3D 形状
基本信息
- 批准号:RGPIN-2022-04533
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We associate vision with the eye, but in fact it is a network of visual areas in the brain that allows us to make sense of the visual images formed by the eye. This network performs the computations required to solve a remarkable diversity of visual tasks - rapidly organizing the image into the distinct surfaces forming the 3D scene, recognizing and manipulating objects, and navigating safely and efficiently. The goal of the proposed research is to understand these computational processes, and to develop better machine vision systems for artificial intelligence applications based on this understanding. We focus here specifically on human and machine perception of 2D and 3D shape and scene layout from contour. Image contours arise from sharp changes in luminance, colour and texture corresponding to important features of the scene, including the boundaries of objects and changes in material and lighting. These contours form strong cues to object/surface shape and the human visual system is known to be exquisitely sensitive to these cues. Yet much remains unknown about the neural computations that underlie this sensitivity, and these cues are under-utilized by computer vision systems. Our research aims to elucidate these neural computations and deliver useful shape-from-contour computer vision algorithms based on our findings. This is a deeply interdisciplinary endeavour, involving 1) systems-level psychophysical studies of human perception, 2) modeling of neural computations in the brain, 3) mathematical and statistical modeling relating the physics of our visual environment to image observations and 4) computational theory, models and computer vision algorithms for making useful inferences from image data. Deep neural network (DNN) models play a central role in current computational vision research. Performance has reached human levels on some tasks and DNN models now serve as our most accurate predictors for physiological and behavioural response to object stimuli. However, significant deviations between DNN models and biological perception have been noted and their high dimensionality limits their contribution to scientific understanding and their trustability in applications. Our research will address these limitations through changes in training and architecture and through integration with more explainable computational approaches that rely on information theory and optimal estimation theory. In the short term, results of this research will lead to a better scientific understanding of the human brain and more trustable object processing systems for performance-critical applications such as autonomous driving and robot navigation. In the long term, this research program will strengthen Canada's position as a world-leader in computational neuroscience and bio-inspired AI research.
我们将视觉与眼睛联系在一起,但实际上它是大脑中视觉区域的网络,使我们能够理解眼睛形成的视觉图像。该网络执行解决各种视觉任务所需的计算-快速将图像组织成形成3D场景的不同表面,识别和操纵物体,以及安全有效地导航。拟议研究的目标是了解这些计算过程,并在此基础上为人工智能应用开发更好的机器视觉系统。 我们在这里特别关注人类和机器对2D和3D形状的感知以及轮廓的场景布局。图像轮廓是由亮度、颜色和纹理的急剧变化引起的,这些变化对应于场景的重要特征,包括物体的边界以及材料和照明的变化。这些轮廓形成对物体/表面形状的强烈提示,并且已知人类视觉系统对这些提示非常敏感。然而,关于这种敏感性背后的神经计算仍有很多未知之处,并且这些线索未被计算机视觉系统充分利用。 我们的研究旨在阐明这些神经计算,并根据我们的发现提供有用的轮廓形状计算机视觉算法。这是一项深入的跨学科努力,涉及1)人类感知的系统级心理物理学研究,2)大脑中神经计算的建模,3)将我们的视觉环境物理学与图像观察相关联的数学和统计建模,以及4)计算理论,模型和计算机视觉算法,用于从图像数据中进行有用的推断。 深度神经网络(DNN)模型在当前的计算视觉研究中发挥着核心作用。在某些任务上,性能已经达到了人类的水平,DNN模型现在是我们对物体刺激的生理和行为反应的最准确的预测器。然而,DNN模型和生物感知之间的显着偏差已经被注意到,它们的高维性限制了它们对科学理解的贡献及其在应用中的可信度。我们的研究将通过改变训练和架构,并通过与依赖于信息论和最优估计理论的更可解释的计算方法相结合来解决这些限制。在短期内,这项研究的结果将有助于更好地科学理解人类大脑,并为自动驾驶和机器人导航等性能关键型应用提供更可靠的对象处理系统。从长远来看,这项研究计划将加强加拿大在计算神经科学和生物启发人工智能研究方面的世界领先地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elder, James其他文献
Multicenter Validation of Deep Learning Algorithm ROP.AI for the Automated Diagnosis of Plus Disease in ROP.
- DOI:
10.1167/tvst.12.8.13 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:3
- 作者:
Bai, Amelia;Dai, Shuan;Hung, Jacky;Kirpalani, Aditi;Russell, Heather;Elder, James;Shah, Shaheen;Carty, Christopher;Tan, Zachary - 通讯作者:
Tan, Zachary
Elder, James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elder, James', 18)}}的其他基金
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Training Experience
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Training Experience
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Training Experience
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Training Experience
Attentive sensor for dynamic scene analysis
用于动态场景分析的细心传感器
- 批准号:
500187-2016 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Idea to Innovation
NSERC CREATE Program in Data Analytics and Visualization
NSERC CREATE 数据分析和可视化项目
- 批准号:
466280-2015 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Training Experience
Recurrent computations for the perceptual organization of shape
形状感知组织的循环计算
- 批准号:
RGPIN-2015-05688 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving Cochlear Implant Outcomes Through Modeling and Programming Strategies Based on Human Inner Ear Pathology
通过基于人类内耳病理学的建模和编程策略改善人工耳蜗的效果
- 批准号:
10825043 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Learning diagnostic latent representations for human material perception: common mechanisms and individual variability
学习人类物质感知的诊断潜在表征:共同机制和个体差异
- 批准号:
10580295 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Learning to perceive: segmental foreign accent generation and computational analysis for education and human-machine interaction
学习感知:用于教育和人机交互的分段外国口音生成和计算分析
- 批准号:
23K18657 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Towards Human-like Machine Perception for Embodied AI
实现人工智能的类人机器感知
- 批准号:
DE220101390 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Early Career Researcher Award
Parkinson’s disease biomarkers in human olfactory cleft mucus
人类嗅裂粘液中的帕金森病生物标志物
- 批准号:
10354673 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Parkinson’s disease biomarkers in human olfactory cleft mucus
人类嗅裂粘液中的帕金森病生物标志物
- 批准号:
10659011 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Biophysical models of human olfactory intensity perception
人类嗅觉强度感知的生物物理模型
- 批准号:
10589044 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
CAREER: Optimizing Human Speech Perception in Noisy Environments with User-Guided Machine Learning
职业:通过用户引导的机器学习优化嘈杂环境中的人类语音感知
- 批准号:
2235228 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
Accelerating discovery of the human foveal microconnectome with deep learning
通过深度学习加速人类中心凹微连接组的发现
- 批准号:
10411154 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
The role of odor imagery ability in human food cue reactivity and obesity risk
气味意象能力在人类食物线索反应和肥胖风险中的作用
- 批准号:
10479861 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别: